Laplace--Beltrami Equations and Numerical Conformal Mappings on Surfaces

Type: Preprint

Publication Date: 2024-04-19

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2404.12743

Abstract

The conjugate function method is an algorithm for numerical computation of conformal mappings for simply and multiply connected domains. In this paper, the conjugate function method is extended to cover conformal mappings between Riemannian surfaces. The main challenge addressed here is the connection between Laplace--Beltrami equations on surfaces and the computation of the conformal modulus of a quadrilateral. We consider mappings of simply, doubly, and multiply connected domains. The numerical computation is based on an $hp$-adaptive finite element method. The key advantage of our approach is that it allows highly accurate computations of mappings on surfaces, including domains of complex boundary geometry involving strong singularities and cusps. The efficacy of the proposed method is illustrated via an extensive set of numerical experiments including error estimates.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Numerical Computation of Surface Conformal Mappings 2012 Xianfeng Gu
Wei Zeng
Feng Luo
Shingā€Tung Yau
+ Conjugate Function Method and Conformal Mappings in Multiply Connected Domains 2015 Harri Hakula
Tri Quach
Antti Rasila
+ Conjugate Function Method and Conformal Mappings in Multiply Connected Domains 2015 Harri Hakula
Tri Quach
Antti Rasila
+ Laplaceā€“Beltrami Equations and Numerical Conformal Mappings on Surfaces 2025 Harri Hakula
Antti Rasila
+ Conjugate function method for numerical conformal mappings 2012 Harri Hakula
Tri Quach
Antti Rasila
+ PDF Chat Sharp interfaces in two-dimensional free boundary problems: Interface calculation via matched conformal maps 2014 Stuart Thomas Kent
Shankar C. Venkataramani
+ PDF Chat The Conjugate Function Method and Conformal Mappings in Multiply Connected Domains 2019 Harri Hakula
Tri Quach
Antti Rasila
+ QCMC: Quasi-conformal Parameterizations for Multiply-connected domains 2014 Kin Tat Ho
Lok Ming Lui
+ PDF Chat Numerical Conformal Mapping to One-Tooth Gear-Shaped Domains and Applications 2015 Philip R. Brown
R. Michael Porter
+ Numerical Conformal Mapping 2010 N. Papamichael
Nikos Stylianopoulos
+ A numerical conformal mapping method and the poisson equation on irregular domains 1984 Emmanuel Kamgnia
+ QCMC: Quasi-conformal Parameterizations for Multiply-connected domains 2014 Kin Tat Ho
Lok Ming Lui
+ Optimal-transport-based mesh adaptivity on the plane and sphere using finite elements 2016 Andrew T. T. McRae
Colin J. Cotter
Chris Budd
+ Optimal-transport-based mesh adaptivity on the plane and sphere using finite elements 2016 Andrew T. T. McRae
Colin J. Cotter
Chris Budd
+ PDF Chat Optimal-Transport--Based Mesh Adaptivity on the Plane and Sphere Using Finite Elements 2018 Andrew T. T. McRae
Colin J. Cotter
Chris Budd
+ Conformal Mappings and Applications 2021 Mark J. Ablowitz
A. S. Fokas
+ Conformal Mapping Methods for Interfacial Dynamics 2005 Martin Z. Bazant
Darren Crowdy
+ Complex Analysis and Conformal Mapping 2015 Peter J. Olver
+ An analytical-numerical method for conformal mappings of complex-shaped domains 2009 Š’. Š˜. Š’Š»Š°ŃŠ¾Š²
A. B. Palā€™tsev
+ Conjugate Function Method for 2012 Harri Hakula
Tri Quach
Antti Rasila

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors