Leading Giant graviton expansion of Schur correlators in large representations

Type: Preprint

Publication Date: 2024-04-19

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2404.12690

Abstract

We consider 4d $\mathcal N=4$ $U(N)$ SYM and the leading giant graviton correction to the Schur defect 2-point functions of $\frac{1}{2}$-BPS Wilson lines in rank-$k$ symmetric and antisymmetric representations. We study in particular the large $k$ limit for the symmetric case and the regime $1\ll k \ll N$ in the antisymmetric one. We present exact results for the correction in agreement with matrix model evaluation at finite $N,k$. The Wilson lines in symmetric/antisymmetric representations admit a description in terms of D3$_{k}$ and D5$_{k}$ brane probes representing a collection of $k$ fundamental strings. In this picture, giant graviton corrections come from fluctuations of brane probes in presence of a wrapped D3 brane giant graviton. In particular, for the antisymmetric case, our leading correction matches the half-index of the 3d $\mathcal N=4$ Maxwell theory living on the 3d disk which is a part of the giant graviton divided out by the D5$_{k}$ probe, as recently proposed in arXiv:2404.08302. For the symmetric case at large $k$, we derive an explicit exact residue formula for the leading correction.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Schur line defect correlators and giant graviton expansion 2024 Matteo Beccaria
+ PDF Chat $\mathcal N=4$ SYM line defect Schur index and semiclassical string 2024 Matteo Beccaria
+ PDF Chat Giant graviton expansion of Schur index and quasimodular forms 2024 Matteo Beccaria
Alejandro Cabo-Bizet
+ PDF Chat Large $N$ Schur index of $\mathcal N=4$ SYM from semiclassical D3 brane 2024 Matteo Beccaria
Alejandro Cabo-Bizet
+ $$ \mathcal{N} $$ = 4 SYM line defect Schur index and semiclassical string 2024 Matteo Beccaria
+ Exact $\mathcal{N}=2^{*}$ Schur line defect correlators 2023 Yasuyuki Hatsuda
Tadashi Okazaki
+ PDF Chat Giant graviton expansions for line operator index 2024 Yosuke Imamura
+ PDF Chat Giant graviton expansions for line operator index 2024 Yosuke Imamura
+ PDF Chat Exact $$ \mathcal{N} $$ = 2* Schur line defect correlators 2023 Yasuyuki Hatsuda
Tadashi Okazaki
+ PDF Chat Brane expansions for anti-symmetric line operator index 2024 Yosuke Imamura
Masato Inoue
+ The giant graviton expansion in $\mathbf{\text{AdS}_5 \times S^5}$ 2023 Giorgos Eleftheriou
Sameer Murthy
Martí Rosselló
+ On the brane expansion of the Schur index 2023 Matteo Beccaria
Alejandro Cabo-Bizet
+ Exact Correlators of Giant Gravitons from dual N=4 SYM 2001 Steve Corley
Antal Jevicki
Sanjaye Ramgoolam
+ PDF Chat Brane expansions for anti-symmetric line operator index 2024 Yosuke Imamura
Masato Inoue
+ PDF Chat Giant graviton expansion for general Wilson line operator indices 2024 Yosuke Imamura
Akihiro Sei
Daisuke Yokoyama
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:math>correction in the D3-brane description of a circular Wilson loop at strong coupling 2014 Evgeny I. Buchbinder
A.A. Tseytlin
+ PDF Chat Giant graviton expansion of Schur index and quasimodular forms 2024 Matteo Beccaria
Alejandro Cabo-Bizet
+ PDF Chat Real and virtual bound states in Lüscher corrections for CP<sup>3</sup>magnons 2012 Michael C. Abbott
Inês Aniceto
Diego Bombardelli
+ PDF Chat Operator product expansion of higher rank Wilson loops from D-branes and matrix models 2006 Simone Giombi
Riccardo Ricci
Diego Trancanelli
+ PDF Chat Quantum wrapped giant magnon 2008 Nikolay Gromov
Sakura Schäfer‐Nameki
Pedro Vieira

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors