The square of a Hamilton cycle in randomly perturbed graphs

Type: Article

Publication Date: 2024-04-16

Citations: 0

DOI: https://doi.org/10.1002/rsa.21215

Abstract

Abstract We investigate the appearance of the square of a Hamilton cycle in the model of randomly perturbed graphs, which is, for a given , the union of any ‐vertex graph with minimum degree and the binomial random graph . This is known when and we determine the exact perturbed threshold probability in all the remaining cases, that is, for each . We demonstrate that, as ranges over the interval , the threshold performs a countably infinite number of ‘jumps’. Our result has implications on the perturbed threshold for two‐universality, where we also fully address all open cases.

Locations

  • arXiv (Cornell University) - View - PDF
  • London School of Economics and Political Science Research Online (London School of Economics and Political Science) - View - PDF
  • Random Structures and Algorithms - View

Similar Works

Action Title Year Authors
+ The square of a Hamilton cycle in randomly perturbed graphs 2022 Julia Böttcher
Olaf Parczyk
Amedeo Sgueglia
Jozef Skokan
+ PDF Chat The Square of a Hamilton Cycle in Randomly Perturbed Graphs 2021 Julia Böttcher
Olaf Parczyk
Amedeo Sgueglia
Jozef Skokan
+ The threshold for the square of a Hamilton cycle 2020 Jeff Kahn
Bhargav Narayanan
Jinyoung Park
+ The threshold for the square of a Hamilton cycle 2020 Jeff Kahn
Bhargav Narayanan
Jinyoung Park
+ PDF Chat Clique factors in randomly perturbed graphs: the transition points 2024 Sylwia Antoniuk
Nina Kamčev
Christian Reiher
+ PDF Chat Triangles in randomly perturbed graphs 2022 Julia Böttcher
Olaf Parczyk
Amedeo Sgueglia
Jozef Skokan
+ Cycle lengths in randomly perturbed graphs 2022 Elad Aigner‐Horev
Dan Hefetz
Michael Krivelevich
+ PDF Chat How many random edges make an almost-Dirac graph Hamiltonian? 2024 Alberto Espuny Díaz
Richarlotte Valérà Razafindravola
+ PDF Chat Triangles in randomly perturbed graphs 2020 Julia Böttcher
Olaf Parczyk
Amedeo Sgueglia
Jozef Skokan
+ Hamiltonicity of Randomly Perturbed Graphs 2021 Alberto Espuny Díaz
António Girão
+ PDF Chat Cycle lengths in randomly perturbed graphs 2023 Elad Aigner‐Horev
Dan Hefetz
Michael Krivelevich
+ PDF Chat Powers of tight Hamilton cycles in randomly perturbed hypergraphs 2019 Wiebke Bedenknecht
Jie Han
Yoshiharu Kohayakawa
Guilherme Oliveira Mota
+ Spanning -cycles in random graphs 2023 Alberto Espuny Díaz
Yury Person
+ Random perturbation of sparse graphs 2020 Max Hahn‐Klimroth
Giulia S. Maesaka
Yannick Mogge
Samuel Mohr
Olaf Parczyk
+ Random perturbation of sparse graphs 2020 Max Hahn‐Klimroth
Giulia S. Maesaka
Yannick Mogge
Samuel Mohr
Olaf Parczyk
+ PDF Chat Random Perturbation of Sparse Graphs 2021 Max Hahn‐Klimroth
Giulia S. Maesaka
Yannick Mogge
Samuel Mohr
Olaf Parczyk
+ PDF Chat Hamiltonicity in randomly perturbed hypergraphs 2020 Jie Han
Yi Zhao
+ PDF Chat EMBEDDING SPANNING BOUNDED DEGREE GRAPHS IN RANDOMLY PERTURBED GRAPHS 2020 Julia Böttcher
Richard Montgomery
Olaf Parczyk
Yury Person
+ Powers of tight Hamilton cycles in randomly perturbed hypergraphs 2018 Wiebke Bedenknecht
Jie Han
Yoshiharu Kohayakawa
Guilherme Oliveira Mota
+ Powers of tight Hamilton cycles in randomly perturbed hypergraphs 2018 Wiebke Bedenknecht
Jie Han
Yoshiharu Kohayakawa
Guilherme Oliveira Mota

Works That Cite This (0)

Action Title Year Authors