Quadratic Nonlinear Derivative Schrödinger Equations - Part 2

Type: Preprint

Publication Date: 2006-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.math/0602600

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Quadratic nonlinear derivative Schrödinger equations - Part 2 2008 Ioan Bejenaru
+ Quadratic Nonlinear Derivative Schrödiger Equations - Part 1 2005 Ioan Bejenaru
+ Well-posedness for a nonlinear Schrödinger equation with quadratic derivative nonlinearities for bounded primitive initial data 2023 Kohei Akase
+ A refined global well-posedness result for Schrodinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations with low regularity periodic initial data 2013 Hiroyuki Hirayama
+ PDF Chat Low regularity solutions for a 2D quadratic nonlinear Schrödinger equation 2008 Ioan Bejenaru
Daniela De Silva
+ PDF Chat On quadratic derivative Schrödinger equations in one space dimension 2007 Atanas Stefanov
+ PDF Chat Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^{2}(\R)$ 2024 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Improved well-posedness for the quadratic derivative nonlinear wave equation in 2D 2013 Viktor Grigoryan
Allison Tanguay
+ Improved well-posedness for the quadratic derivative nonlinear wave equation in 2D 2019 Viktor Grigoryan
Allison Tanguay
+ Low regularity solutions for a 2D quadratic non-linear Schrödinger equation 2006 Ioan Bejenaru
Daniela De Silva
+ Large data local solutions for the derivative NLS equation 2006 Ioan Bejenaru
Daniel Tataru
+ PDF Chat Quadratic forms for the 1-D semilinear Schrödinger equation 1996 Carlos E. Kenig
Gustavo Ponce
Luis Vega
+ PDF Chat Global well-posedness for the derivative nonlinear Schr\"odinger equation 2022 Hajer Bahouri
Galina Perelman
+ Well-posedness for a quadratic derivative nonlinear Schrödinger system at the critical regularity 2016 Masahiro Ikeda
Nobu Kishimoto
Mamoru Okamoto
+ Local Well-Posedness for the Derivative Nonlinear Schrödinger Equation in Besov spaces 2016 Cai Constantin Cloos
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^2(\mathbb{R})$ 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Local well‐posedness for a system of quadratic nonlinear Schrödinger equations in one or two dimensions 2016 Huali Zhang
+ PDF Chat Small data well-posedness for derivative nonlinear Schrödinger equations 2018 Donlapark Pornnopparath

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors