Von Neumann Algebras of Sofic Groups with $β_{1}^{(2)}=0$ are Strongly $1$-Bounded

Type: Preprint

Publication Date: 2016-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1604.08606

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Von Neumann Algebras of Sofic Groups with $\beta_{1}^{(2)}=0$ are Strongly $1$-Bounded 2016 Dimitri Shlyakhtenko
+ PDF Chat Von Neumann algebras of sofic groups with β(2)1=0 are strongly 1-bounded 2020 Dimitri Shlyakhtenko
+ Vanishing first cohomology and strong 1-boundedness for von Neumann algebras 2021 Ben Hayes
David Jekel
Srivatsav Kunnawalkam Elayavalli
+ Vanishing first cohomology and strong 1-boundedness for von Neumann algebras 2023 Ben Hayes
David Jekel
Srivatsav Kunnawalkam Elayavalli
+ Property (T), vanishing cohomology, and strong $1$-boundedness 2021 Ben Hayes
David Jekel
Srivatsav Kunnawalkam Elayavalli
+ PDF Chat Entropy theory for sofic groupoids I: The foundations 2014 Lewis Bowen
+ An <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-version of von Neumann dimension for Banach space representations of sofic groups II 2015 Ben Hayes
+ Strongly 1-bounded von Neumann algebras 2005 Kenley Jung
+ Entropy theory for locally compact sofic groups 2016 Sukhpreet Singh
+ PDF Chat Non-microstates free entropy dimension for groups 2005 Igor Mineyev
Dimitri Shlyakhtenko
+ Cost, $\ell^2$-Betti numbers and the sofic entropy of some algebraic actions 2015 Damien Gaboriau
Brandon Seward
+ Completely positive entropy actions of sofic groups with $\mathbb{Z}$ in their center 2015 Peter Burton
+ Cost, $\ell^2$-Betti numbers and the sofic entropy of some algebraic actions 2015 Damien Gaboriau
Brandon Seward
+ Groups, Actions and von Neumann algebras 2015 Alessandro Carderi
+ PDF Chat Strongly 1-Bounded Von Neumann Algebras 2007 Kenley Jung
+ The Rank Theorem and $L^2$-invariants in Free Entropy: Global Upper Bounds 2016 Kenley Jung
+ ℓ 2-Betti Numbers of Groups 2019 Holger Kammeyer
+ The Rank Theorem and $L^2$-invariants in Free Entropy: Global Upper Bounds 2016 Kenley Jung
+ An<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-version of von Neumann dimension for Banach space representations of sofic groups 2013 Ben Hayes
+ The Entropy of Gibbs Measures on Sofic Groups 2016 Andrei Alpeev

Works Cited by This (0)

Action Title Year Authors