Harmonic measure and quantitative connectivity: geometric characterization of the $L^p$-solvability of the Dirichlet problem. Part I

Type: Preprint

Publication Date: 2017-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1712.03696

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Harmonic measure and quantitative connectivity: geometric characterization of the $L^p$ solvability of the Dirichlet problem. Part II 2018 Jonas Azzam
Mihalis Mourgoglou
Xavier Tolsa
+ PDF Chat Harmonic measure and quantitative connectivity: geometric characterization of the $$L^p$$-solvability of the Dirichlet problem 2020 Jonas Azzam
Steve Hofmann
José María Martell
Mihalis Mourgoglou
Xavier Tolsa
+ A sufficient geometric criterion for quantitative absolute continuity of harmonic measure 2017 Steve Hofmann
José María Martell
+ Harmonic measure and approximation of uniformly rectifiable sets 2015 Simon Bortz
Steve Hofmann
+ Harmonic measure and approximation of uniformly rectifiable sets 2015 Simon Bortz
Steve Hofmann
+ PDF Chat Harmonic measure and approximation of uniformly rectifiable sets 2017 Simon Bortz
Steve Hofmann
+ Rectifiability of harmonic measure in domains with porous boundaries 2015 Jonas Azzam
Mihalis Mourgoglou
Xavier Tolsa
+ $\varepsilon $-approximability of harmonic functions in $L^p$ implies uniform rectifiability 2018 Simon Bortz
Olli Tapiola
+ Approximate tangents, harmonic measure, and domains with rectifiable boundaries 2016 Mihalis Mourgoglou
+ Approximate tangents, harmonic measure, and domains with rectifiable boundaries 2016 Mihalis Mourgoglou
+ PDF Chat Rectifiability, interior approximation and harmonic measure 2019 Murat Akman
Simon Bortz
Steve Hofmann
José María Martell
+ PDF Chat Absolute Continuity of the Harmonic Measure on Low Dimensional Rectifiable Sets 2022 Joseph Feneuil
+ Uniform rectifiability implies Varopoulos extensions 2020 Steve Hofmann
Olli Tapiola
+ Uniform rectifiability implies Varopoulos extensions 2020 Steve Hofmann
Olli Tapiola
+ Isoperimetric sets and $p$-Cheeger sets are in bijection 2022 Marco Caroccia
Giorgio Saracco
+ Computability in Harmonic Analysis. 2020 Ilia Binder
Adi Glücksam
Cristóbal Rojas
Michael Yampolsky
+ Geometric Measure Theory 2022 Juan Marín
José María Martell
Dorina Mitrea
Irina Mitrea
Marius Mitrea
+ Connectivity conditions and boundary Poincaré inequalities 2022 Olli Tapiola
Xavier Tolsa
+ PDF Chat The regularity problem for the Laplace equation in rough domains 2024 Mihalis Mourgoglou
Xavier Tolsa
+ $\varepsilon$-Approximability of Harmonic Functions in $L^p$ Implies Uniform Rectifiability 2018 Simon Bortz
Olli Tapiola

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Quantitative comparisons of multiscale geometric properties 2021 Jonas Azzam
Michele Villa

Works Cited by This (0)

Action Title Year Authors