The number of solutions of the Erdős-Straus Equation and sums of $k$ unit fractions

Type: Preprint

Publication Date: 2018-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1805.02945

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The number of solutions of the Erdős-Straus Equation and sums of<i>k</i>unit fractions 2019 Christian Elsholtz
Stefan Planitzer
+ The number of solutions of the Erd\H{o}s-Straus Equation and sums of $k$ unit fractions 2018 Christian Elsholtz
Stefan Planitzer
+ Counting the number of solutions to the Erdos-Straus equation on unit fractions 2011 Christian Elsholtz
Terence Tao
+ PDF Chat Sums of $k$ unit fractions 2001 Christian Elsholtz
+ PDF Chat COUNTING THE NUMBER OF SOLUTIONS TO THE ERDŐS–STRAUS EQUATION ON UNIT FRACTIONS 2013 Christian Elsholtz
Terence Tao
+ An Upper-Bound on the Number of Representations as the Sum of a Prime and a Square 2009 Aran Nayebi
+ An Upper-Bound on the Representations as the Sum of a Prime and a Square 2009 Aran Nayebi
+ On the number of representations of integers as the sum of a prime and a $k$-th power 2009 Aran Nayebi
+ Structure and form of the solutions of the Erdos-Straus conjecture 2022 Miguel Angel Lopez
+ A Study on Erdős-Straus conjecture on Diophantine equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 2021 S. Maiti
+ On the number of solutions to $\frac{4}{p}=\frac{1}{n_1}+\frac{1}{n_2}+\frac{1}{n_3}$ 2011 Terence Tao
+ The Number of Representations of an Integer as the Sum of a Prime and a k-Free Integer 1949 L. Mirsky
+ PDF Chat A short proof of the conjecture of Erd\"{o}s--Straus for every $n\equiv 13 \textrm{ mod }24$ 2020 Mario Gionfriddo
Elena Guardo
+ The simplest proof of Erdos-Straus conjecture 2021 Mohammad Arab
+ PDF Chat On the unsolvability of certain equations of Erdős–Moser type 2019 Ioulia N. Baoulina
+ PDF Chat Primary Pseudoperfect Numbers, Arithmetic Progressions, and the Erdős-Moser Equation 2017 Jonathan Sondow
Kieren MacMillan
+ A Study on Erd\H{o}s-Straus conjecture on Diophantine equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ 2020 S. Maiti
+ A remark on a conjecture of Erdős and Straus 2020 Youssef Lazar
+ The conjecture of Erdös--Straus is true for every $n\equiv 13 \textrm{ mod }24$ 2020 Mario Gionfriddo
Elena Guardo
+ On the Erdos-Straus Conjecture 2010 Eugen J. Ionaşcu
Andrew Wilson

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors