Critical Perturbations for Second Order Elliptic Operators—Part II: Non-tangential Maximal Function Estimates

Type: Article

Publication Date: 2024-04-05

Citations: 0

DOI: https://doi.org/10.1007/s00205-024-01977-x

Locations

  • Archive for Rational Mechanics and Analysis - View

Similar Works

Action Title Year Authors
+ Critical Perturbations for Second Order Elliptic Operators. Part II: Non-tangential maximal function estimates 2023 Simon Bortz
Steve Hofmann
José Luis Luna García
Svitlana Mayboroda
Bruno Poggi
+ PDF Chat A quantitative Carleman estimate for second-order elliptic operators – ERRATUM 2019 Ivica Nakić
Christian Rose
Martin Tautenhahn
+ Maximal estimates for an oscillatory operator 2022 Jiecheng Chen
Dashan Fan
Fayou Zhao
+ Gradient Estimates for Elliptic Operators with Second-Order Discontinuous Coefficients 2019 Giorgio Metafune
Luigi Negro
Chiara Spina
+ PDF Chat Topological sensitivity analysis for high order elliptic operators 2012 Samuel Amstutz
Antônio André Novotny
Nicolas Van Goethem
+ Constrained critical points and eigenvalue approximation for semilinear elliptic operators 1999 Raffaele Chiappinelli
+ Nonlinear Elliptic Problems Above Criticality 2006 Manuel del Pino
+ Critical elliptic problems with exponential growth 2015 Jacques Giacomoni
+ Quantitative uniqueness for second-order elliptic operators 1998 Igor Kukavica
+ PDF Chat Large critical exponents for some second order uniformly elliptic operators. 2007 María J. Esteban
Patricio Felmer
Alexander Quaas
+ Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results 2007 Boumediene Abdellaoui
Ireneo Peral
Ana Primo
+ Quantitative Unique Continuation for Second Order Elliptic Operators with Singular Coefficients 2020 Tu Nguyen
+ A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth 2003 O. Druet
Emmanuel Hebey
Frédéric Robert
+ A 𝐶⁰-theory for the blow-up of second order elliptic equations of critical Sobolev growth 2003 Olivier Druet
Emmanuel Hebey
Frédéric Robert
+ A strong extremum principle for weakly elliptically connected second-order operators 1979 L. I. Kamynin
B. N. Khimchenko
+ Kernel estimates for elliptic operators with second-order discontinuous coefficients 2016 Giorgio Metafune
Motohiro Sobajima
Chiara Spina
+ Asymptotics for Elliptic Equations Involving Critical Growth 1989 Haı̈m Brezis
L. A. Peletier
+ Singular elliptic problems in with critical Sobolev–Hardy exponents 2007 Dongsheng Kang
Shuangjie Peng
+ Weighted Estimates for a Class of Global Maximal Operators Associated with Dispersive Equation 2022 Yong Ding
Yaoming Niu
+ Singular quasilinear elliptic problems with indefinite weights and critical potential 2011 Gao Jia
Qing Zhao
Dai Chun-yan

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (42)

Action Title Year Authors
+ An Introduction to Semilinear Evolution Equations 1998 Thierry Cazenave
Alain Haraux
Yvan Martel
+ Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems 1994 Carlos E. Kenig
+ PDF Chat Weighted norm inequalities for maximal functions and singular integrals 1974 Ronald R. Coifman
Charles Fefferman
+ PDF Chat Perturbation Theory for Linear Operators 1995 Tosio Kato
+ PDF Chat The method of layer potentials in<i>L<sup>p</sup></i>and endpoint spaces for elliptic operators with<i>L<sup>∞</sup></i>coefficients 2015 Steve Hofmann
Marius Mitrea
Andrew J. Morris
+ PDF Chat Weighted norm inequalities for the Hardy maximal function 1972 Benjamin Muckenhoupt
+ The neumann problem for elliptic equations with non-smooth coefficients 1993 Carlos E. Kenig
Jill Pipher
+ Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains 1984 Gregory C. Verchota
+ Analyticity of layer potentials and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> solvability of boundary value problems for divergence form elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> coefficients 2010 M. Angeles Alfonseca
Pascal Auscher
Andreas Axelsson
Steve Hofmann
Seick Kim
+ PDF Chat Weighted norm inequalities for fractional integrals 1974 Benjamin Muckenhoupt
Richard L. Wheeden