A polynomial analogue of Jacobsthal function

Type: Article

Publication Date: 2024-01-01

Citations: 0

DOI: https://doi.org/10.4213/im9467e

Abstract

For a polynomial $f(x)\in \mathbb Z[x]$ we study an analogue of Jacobsthal function defined by $j_f(N) =\max_{m}\{for some x \in \mathbb N$ the inequality $(x+f(i),N) >1 $ holds for all $i \leqslant m\}$. We prove the lower bound $$ j_f(P(y))\gg y(\ln y)^{\ell_f-1}(\frac{(\ln\ln y)^2}{\ln\ln\ln y})^{h_f}(\frac{\ln y\ln\ln\ln y}{(\ln\ln y)^2})^{M(f)}, $$ where $P(y)$ is the product of all primes $p$ below $y$, $\ell_f$ is the number of distinct linear factors of $f(x)$, $h_f$ is the number of distinct non-linear irreducible factors and $M(f)$ is the average size of the maximal preimage of a point under a map $f\colon \mathbb F_p\to \mathbb F_p$. The quantity $M(f)$ is computed in terms of certain Galois groups.

Locations

  • Izvestiya Mathematics - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A polynomial analogue of Jacobsthal function 2024 Aleksandr Borisovich Kalmynin
Sergei Vladimirovich Konyagin
+ A polynomial analogue of Jacobsthal function 2023 Alexander Kalmynin
Sergeĭ Konyagin
+ PDF Chat An upper bound on Jacobsthal’s function 2014 Fintan Costello
Paul Watts
+ A Generalization of Jacobsthal Polynomials 1999 M.N.S. Swamy
+ A short note on Jacobsthal's function 2013 Fintan Costello
Paul Watts
+ A short note on Jacobsthal's function 2013 Fintan Costello
Paul Watts
+ A study of jacobi polynomials 2012 Sayed Mohammad Abbas
+ JACOBSTHAL SUMS OF PRIME ORDER 2015 A. Katre
+ An upper bound on Jacobsthal's function 2012 Fintan Costello
Paul Watts
+ ON A CHARACTERIZATION OF MEIXNER'S POLYNOMIALS 1966 W. A. Al‐Salam
+ A computational upper bound on Jacobsthal's function 2012 Fintan Costello
Paul Watts
+ PDF Chat On the number of polynomial maps into $\mathbb{Z}_{n}$ 2006 Florian Luca
Igor E. Shparlinski
+ PDF Chat On characteristic polynomial of higher order generalized Jacobsthal numbers 2019 Diego Marques
Pavel Trojovský
+ About a polynomial index and its applications 1993 Laurenţiu Panaitopol
D. M. Stefanescu
+ About a polynomial index and its applications 1993 PanaitopolLaurenţiu
ŞtefănescuDoru
+ Polynomial analogue of the Smarandache function 2019 Xiumei Li
Min Sha
+ Algorithmic concepts for the computation of Jacobsthal's function 2016 Mario Ziller
John F. Morack
+ On the reduced height of a polynomial 2007 Artūras Dubickas
Jonas Jankauskas
+ Index of a polynomial field 1979 Askold Khovanskiĭ
+ On a conjecture concerning Kloosterman polynomials 2018 Mritunjay Kumar Singh
Rajesh P. Singh

Works That Cite This (0)

Action Title Year Authors