Type: Article
Publication Date: 2024-04-01
Citations: 0
DOI: https://doi.org/10.1007/s00041-024-10075-1
Abstract We prove an $$L^p$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> -spectral multiplier theorem for sub-Laplacians on Heisenberg type groups under the sharp regularity condition $$s>d\left| 1/p-1/2\right| $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mi>d</mml:mi> <mml:mfenced> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>p</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mfenced> </mml:mrow> </mml:math> , where d is the topological dimension of the underlying group. Our approach relies on restriction type estimates where the multiplier is additionally truncated along the spectrum of the Laplacian on the center of the group.
Action | Title | Year | Authors |
---|---|---|---|
+ | Some Mixed Norm Bounds for the Spectral Projections of the Heisenberg Sublaplacian | 2024 |
Valentina Casarino Paolo Ciatti |