Characters and relations among <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi mathvariant="script">S</mml:mi><mml:mi mathvariant="script">W</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> algebras

Type: Article

Publication Date: 2024-04-02

Citations: 0

DOI: https://doi.org/10.1103/physrevd.109.085004

Abstract

The $\mathcal{S}\mathcal{W}(3/2,2)$ current algebras come in two discrete series indexed by central charge, with the chiral algebra of a supersymmetric sigma model on a Spin(7) manifold as a special case. The unitary representations of these algebras were classified by Gepner and Noyvert, and we use their results to perform an analysis of null descendants and compute the characters for every representation. We obtain threshold relations between the characters of discrete representations and those with continuous conformal weights. Modular transformations are discussed, and we show that the continuous characters can be written as bilinear combinations of characters for consecutive minimal models.

Locations

  • Physical review. D/Physical review. D. - View - PDF

Similar Works

Action Title Year Authors
+ Characters and relations among SW(3/2,2) algebras 2024 Daniel Robbins
Chris Simmons
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mi>c</mml:mi></mml:msub><mml:mo>⊗</mml:mo><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:msub><mml:mo stretchy="false">)</mml:mo><mml:mi>L</mml:mi></mml:msub><mml:mo>⊗</mml:mo><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1… 2010 Richard H. Benavides
William A. Ponce
Yithsbey Giraldo
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn><mml:mn /></mml:math>sigma model with a twisted mass and superpotential: Central charges and solitons 2003 A. Losev
Mikhail Shifman
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:math> superconformal theories with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>D</mml:mi><mml:mi>N</mml:mi></mml:msub></mml:math> blocks 2017 Marco Fazzi
Simone Giacomelli
+ Vertex operator algebras with central charge 1/2 and $-68/7$ 2016 Kiyokazu Nagatomo
Yuichi Sakai
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e90" altimg="si13.svg"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> superconformal characters as the residue of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e100" altimg="si14.svg"><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>s</mml:mi><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mo>̂</mml… 2020 Mohammad Reza Bahraminasab
Mehrdad Ghominejad
+ PDF Chat Ghost center and representations of the diagonal reduction algebra of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mi mathvariant="fraktur">osp</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">|</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> 2023 Jonas T. Hartwig
Dwight Anderson Williams
+ PDF Chat Extremal weight projectors II, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>𝔤𝔩</mml:mi> <mml:mi>N</mml:mi> </mml:msub></mml:math> case 2024 Hoel Queffélec
Paul Wedrich
+ PDF Chat Unitarity of minimal $W$-algebras and their representations II: Ramond sector 2024 Victor G. Kač
Pierluigi Möseneder Frajria
Paolo Papi
+ The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="italic">SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mi mathvariant="italic">SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> sector in the string dual of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="… 2008 G. Grignani
Troels Harmark
Marta Orselli
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>SU</mml:mi><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo><mml:mn /></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo>⊗</mml:mo><mml:mrow><mml:msub><mml:mrow><mml:mi>SU</mml:mi><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mo>)</mml:mo><mml:mn /></mml:mrow><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo>⊗</mml:mo><mml:mrow><mml:msub… 2004 William A. Ponce
Diego A. Gutiérrez
Luis A. Sánchez
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mover accent="true"><mml:mrow><mml:mi>s</mml:mi><mml:mi>l</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover></mml:math> decomposition of denominator formulae of some BKM Lie superalgebras 2021 Suresh Govindarajan
Mohammad Shabbir
Sankaran Viswanath
+ Character formulas in Category $\mathcal O_p$ 2022 Henning Haahr Andersen
+ PDF Chat None 2024
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mi>L</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>matrix model and supersymmetric Yang-Mills integrals 2007 Miguel Tierz
+ Characters of the Unitarizable Highest Weight Modules over the N=2 Superconformal Algebras 2007 V. K. Dobrev
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>M</mml:mi></mml:math>theory on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mn>3</mml:mn><mml:mn /><mml:mo>×</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Z</mml:mi></… 1996 Ashoke Sen
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:math> superconformal characters and partition functions 2006 Massimo Bianchi
F.A. Dolan
Paul Heslop
H. Osborn
+ None 1999 Karen GÃ ⁄ nzl
+ PDF Chat The Category $\mathcal O$ for Lie Algebras of Vector Fields (I): Tilting Modules and Character Formulas 2020 Feifei Duan
Bin Shu
Yu-Feng Yao

Works That Cite This (0)

Action Title Year Authors