Universal convexity and range problems of shifted hypergeometric functions

Type: Article

Publication Date: 2024-03-29

Citations: 0

DOI: https://doi.org/10.1090/proc/16849

Abstract

In the present paper, we study the shifted hypergeometric function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis z right-parenthesis equals z 2 upper F 1 left-parenthesis a comma b semicolon c semicolon z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>z</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mi>F</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>;</mml:mo> <mml:mi>c</mml:mi> <mml:mo>;</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(z)=z_{2}F_{1}(a,b;c;z)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for real parameters with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0 greater-than a less-than-or-equal-to b less-than-or-equal-to c"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>a</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>b</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">0&gt;a\le b\le c</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and its variant <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis z right-parenthesis equals z 2 upper F 2 left-parenthesis a comma b semicolon c semicolon z squared right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>z</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mi>F</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>;</mml:mo> <mml:mi>c</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(z)=z_{2}F_{2}(a,b;c;z^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our first purpose is to solve the range problems for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding="application/x-tex">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> posed by Ponnusamy and Vuorinen [Rocky Mountain J. Math. 31 (2001), pp. 327–353]. Ruscheweyh, Salinas and Sugawa [Israel J. Math. 171 (2009), pp. 285–304] developed the theory of universal prestarlike functions on the slit domain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper C minus left-bracket 1 comma plus normal infinity right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mo class="MJX-variant">∖</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {C}\setminus [1,+\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and showed universal starlikeness of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under some assumptions on the parameters. However, there has been no systematic study of universal convexity of the shifted hypergeometric functions except for the case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="b equals 1"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">b=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our second purpose is to show universal convexity of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under certain conditions on the parameters.

Locations

  • Proceedings of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Universal convexity and range problems of shifted hypergeometric functions 2023 Toshiyuki Sugawa
Limin Wang
Chengfa Wu
+ PDF Chat Generalized hypergeometric functions at unit argument 1992 Wolfgang Bühring
+ PDF Chat On the Order of Convexity for the Shifted Hypergeometric Functions 2021 Limin Wang
+ PDF Chat Contiguity relations for generalized hypergeometric functions 1995 Alan Adolphson
Bernard Dwork
+ PDF Chat An identity for simplifying certain generalized hypergeometric functions 1975 Thomas J. Osler
+ PDF Chat Certain Properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:math>-Hypergeometric Functions 2015 Uzoamaka A. Ezeafulukwe
Maslina Darus
+ PDF Chat Recurrence relations for hypergeometric functions of unit argument 1985 Stanisław Lewanowicz
+ Hypergeometric functions 2010 Richard Beals
Roderick Wong
+ Hypergeometric Functions 2017 Ranjan Roy
+ Hypergeometric Functions 2001
+ Hypergeometric functions 2011 Greg Gbur
+ Hypergeometric functions 2016 Richard Beals
Roderick Wong
+ On the order of convexity for the shifted hypergeometric functions 2020 Limin Wang
+ Hyperbolic hypergeometric functions 2007 Fokko J. van de Bult
+ The Hypergeometric Function 1996 E. T. Whittaker
G. N. Watson
+ The Hypergeometric Function 2021 Victor H. Moll
+ PDF Chat Differential-difference properties of hypergeometric series 2022 Nicolas Brisebarre
Bruno Salvy
+ The Hypergeometric Function 1997
+ The hypergeometric function 1995 Gerrit Heckman
Henrik Schlicktkrull
+ The hypergeometric function 1966 Wilhelm Magnus
Fritz Oberhettinger
Raj Pal Soni

Works That Cite This (0)

Action Title Year Authors