Unified Generative Modeling of 3D Molecules via Bayesian Flow Networks

Type: Preprint

Publication Date: 2024-03-17

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2403.15441

Abstract

Advanced generative model (e.g., diffusion model) derived from simplified continuity assumptions of data distribution, though showing promising progress, has been difficult to apply directly to geometry generation applications due to the multi-modality and noise-sensitive nature of molecule geometry. This work introduces Geometric Bayesian Flow Networks (GeoBFN), which naturally fits molecule geometry by modeling diverse modalities in the differentiable parameter space of distributions. GeoBFN maintains the SE-(3) invariant density modeling property by incorporating equivariant inter-dependency modeling on parameters of distributions and unifying the probabilistic modeling of different modalities. Through optimized training and sampling techniques, we demonstrate that GeoBFN achieves state-of-the-art performance on multiple 3D molecule generation benchmarks in terms of generation quality (90.87% molecule stability in QM9 and 85.6% atom stability in GEOM-DRUG. GeoBFN can also conduct sampling with any number of steps to reach an optimal trade-off between efficiency and quality (e.g., 20-times speedup without sacrificing performance).

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Equivariant Flow Matching with Hybrid Probability Transport 2023 Yuxuan Song
Jingjing Gong
Minkai Xu
Ziyao Cao
Yanyan Lan
Stefano Ermon
Hao Zhou
Wei‐Ying Ma
+ Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation 2023 Han Huang
Leilei Sun
Bowen Du
Weifeng Lv
+ Geometry-Complete Diffusion for 3D Molecule Generation and Optimization 2023 Alex Morehead
Jianlin Cheng
+ PDF Chat Unified Guidance for Geometry-Conditioned Molecular Generation 2025 Sirine Ayadi
Leon Hetzel
Johanna Sommer
Fabian J. Theis
Stephan Günnemann
+ MDM: Molecular Diffusion Model for 3D Molecule Generation 2022 Lei Huang
Hengtong Zhang
Tingyang Xu
Ka‐Chun Wong
+ PDF Chat MDM: Molecular Diffusion Model for 3D Molecule Generation 2023 Lei Huang
Hengtong Zhang
Tingyang Xu
Ka‐Chun Wong
+ Geometry-complete diffusion for 3D molecule generation and optimization 2024 Alex Morehead
Jianlin Cheng
+ PDF Chat Mixed Continuous and Categorical Flow Matching for 3D De Novo Molecule Generation. 2024 Ian Dunn
David Ryan Koes
+ GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation 2022 Minkai Xu
Lantao Yu
Yang Song
Chence Shi
Stefano Ermon
Jian Tang
+ PDF Chat Geometric Representation Condition Improves Equivariant Molecule Generation 2024 Zian Li
Cai Cun Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
+ DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding 2022 Haitao Lin
Yufei Huang
Meng Liu
Xuanjing Li
Shuiwang Ji
Stan Z. Li
+ Diffusion-Driven Generative Framework for Molecular Conformation Prediction 2024 Bobin Yang
Zhenghan Chen
+ PDF Chat TFG-Flow: Training-free Guidance in Multimodal Generative Flow 2025 Haowei Lin
Shanda Li
Haotian Ye
Yiming Yang
Stefano Ermon
Yitao Liang
Jianzhu Ma
+ PDF Chat Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation 2024 Can Xu
Haosen Wang
Weigang Wang
Pengfei Zheng
Hongyang Chen
+ 3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction 2023 Jiaqi Guan
Wesley Wei Qian
Xingang Peng
Yufeng Su
Jian Peng
Jianzhu Ma
+ PDF Chat Bridging the Gap between Learning and Inference for Diffusion-Based Molecule Generation 2024 Peidong Liu
Wenbo Zhang
Zhe Xue
Jiancheng Lv
Xianggen Liu
+ Equivariant Diffusion for Molecule Generation in 3D 2022 Emiel Hoogeboom
Víctor García Satorras
Clément Vignac
Max Welling
+ MUDiff: Unified Diffusion for Complete Molecule Generation 2023 Chenqing Hua
Sitao Luan
Minkai Xu
Rex Ying
Jie Fu
Stefano Ermon
Doina Precup
+ PDF Chat Diffusion Models in $\textit{De Novo}$ Drug Design 2024 Amira Alakhdar
Barnabás Póczos
Newell R. Washburn
+ Equivariant Shape-Conditioned Generation of 3D Molecules for Ligand-Based Drug Design 2022 Keir Adams
Connor W. Coley

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors