HofstadterTools: A Python package for analyzing the Hofstadter model

Type: Article

Publication Date: 2024-03-26

Citations: 3

DOI: https://doi.org/10.21105/joss.06356

Abstract

The Hofstadter model successfully describes the behavior of non-interacting quantum particles hopping on a lattice coupled to a gauge field, and hence is ubiquitous in many fields of research, including condensed matter, optical, and atomic physics.Motivated by this, we introduce HofstadterTools (https://hofstadter.tools), a Python package that can be used to analyze the energy spectrum of a generalized Hofstadter model, with any combination of hoppings on any regular Euclidean lattice.The package can be applied to compute key properties of the band structure, such as quantum geometry and topology, as well as plot Hofstadter butterflies and Wannier diagrams that are colored according to their Chern numbers.

Locations

  • The Journal of Open Source Software - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ HofstadterTools: A Python package for analyzing the Hofstadter model 2023 Bartholomew Andrews
+ PDF Chat Non-Abelian generalizations of the Hofstadter model: spin–orbit-coupled butterfly pairs 2020 Yi Yang
Bo Zhen
John D. Joannopoulos
Marin Soljačić
+ PDF Chat Exact solutions of fractional Chern insulators: Interacting particles in the Hofstadter model at finite size 2014 Thomas Scaffidi
Steven H. Simon
+ Topology and Self-Similarity of the Hofstadter Butterfly 2014 Indubala I. Satija
+ Chasing the Hofstadter Butterfly 2014 Indubala I. Satija
+ PDF Chat Stability of fractional Chern insulators in the effective continuum limit of Harper-Hofstadter bands with Chern number <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>|</mml:mo><mml:mi>C</mml:mi><mml:mo>|</mml:mo><mml:mo>&gt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> 2018 Bartholomew Andrews
Gunnar Möller
+ Topological Map of the Hofstadter Butterfly and Van Hove Singularities 2015 Gerardo G. Naumis
Indubala I. Satija
+ A Three Dimensional non-Abelian Generalization of the Hofstadter Model 2020 Vincent Liu
Yi Yang
John D. Joannopoulos
Marin Soljačić
+ Fractional disclination charge and discrete shift in the Hofstadter butterfly 2022 Yu-Xuan Zhang
Naren Manjunath
Gautam Nambiar
Maissam Barkeshli
+ PDF Chat The Colored Hofstadter Butterfly for the Honeycomb Lattice 2014 Andréa Agazzi
Jean-Pierre Eckmann
Gian Michele Graf
+ Characterizing the Hofstadter butterfly's outline with Chern numbers in square and honeycomb Fermi lattices 2008 Nathan Goldman
+ Floquet Hofstadter Butterfly on the Kagome and Triangular Lattices 2019 Ariel Barr
Liang Du
Qi Chen
Aaron Barr
Gregory A. Fiete
+ PDF Chat Fractional Disclination Charge and Discrete Shift in the Hofstadter Butterfly 2022 Yuxuan Zhang
Naren Manjunath
Gautam Nambiar
Maissam Barkeshli
+ PDF Chat Hofstadter Butterflies in Topological Insulators 2024 L. L. Li
Marcin Abram
Abhinav Prem
Stephan Haas
+ PDF Chat Evolution of the Hofstadter butterfly in a tunable optical lattice 2015 F. Yılmaz
F. Nur Ăśnal
M. Ă–. Oktel
+ Non-Abelian nonsymmorphic chiral symmetries 2022 Yi Yang
Hoi Chun Po
Vincent Liu
John D. Joannopoulos
Liang Fu
Marin Soljačić
+ PDF Chat Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks 2017 Matthias Gerster
Matteo Rizzi
Pietro Silvi
Marcello Dalmonte
Simone Montangero
+ Stability of Fractional Chern Insulators in the Effective Continuum Limit of $|C|>1$ Harper-Hofstadter Bands 2017 Bartholomew Andrews
Gunnar Möller
+ PDF Chat Stability, phase transitions, and numerical breakdown of fractional Chern insulators in higher Chern bands of the Hofstadter model 2021 Bartholomew Andrews
Titus Neupert
Gunnar Möller
+ On Hofstadter butterfly spectrum: Chern-Simons theory, subband gap mapping, IQHE and FQHE labelling 2021 F. A. Buot
Gibson Maglasang
Allan Roy Elnar
C. M. Galon

Works Cited by This (21)

Action Title Year Authors
+ PDF Chat Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices 2013 Cory R. Dean
Lei Wang
Patrick Maher
Carlos Forsythe
Fereshte Ghahari
Yuanda Gao
Jyoti Katoch
Masa Ishigami
Pilkyung Moon
Mikito Koshino
+ PDF Chat Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices 2013 Monika Aidelsburger
M. Atala
Michael Lohse
Julio T. Barreiro
B. Paredes
Immanuel Bloch
+ PDF Chat The Ten Martini Problem 2009 Artur Avila
Svetlana Jitomirskaya
+ PDF Chat A study of the ambiguity in the solutions to the Diophantine equation for Chern numbers 2014 J. E. Avron
Oded Kenneth
Gal Yehoshua
+ PDF Chat Geometric stability of topological lattice phases 2015 Thomas Jackson
Gunnar Möller
Rahul Roy
+ PDF Chat Light-induced gauge fields for ultracold atoms 2014 Nathan Goldman
Gediminas Juzeliūnas
Patrik Ă–hberg
I. B. Spielman
+ PDF Chat Colloquium: Atomic quantum gases in periodically driven optical lattices 2017 André Eckardt
+ PDF Chat WannierTools: An open-source software package for novel topological materials 2017 Quansheng Wu
ShengNan Zhang
Haifeng Song
Matthias Troyer
Alexey A. Soluyanov
+ Spectroscopic signatures of localization with interacting photons in superconducting qubits 2017 P. Roushan
C. Neill
Jirawat Tangpanitanon
V. M. Bastidas
A. Megrant
R. Barends
Yu Chen
Z. Chen
B. Chiaro
A. Dunsworth
+ PDF Chat Photonic topological boundary pumping as a probe of 4D quantum Hall physics 2018 Oded Zilberberg
Sheng Huang
Jonathan Guglielmon
Mohan Wang
Kevin P. Chen
Yaacov E. Kraus
Mikael C. Rechtsman