HCPM: Hierarchical Candidates Pruning for Efficient Detector-Free Matching

Type: Preprint

Publication Date: 2024-03-19

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2403.12543

Abstract

Deep learning-based image matching methods play a crucial role in computer vision, yet they often suffer from substantial computational demands. To tackle this challenge, we present HCPM, an efficient and detector-free local feature-matching method that employs hierarchical pruning to optimize the matching pipeline. In contrast to recent detector-free methods that depend on an exhaustive set of coarse-level candidates for matching, HCPM selectively concentrates on a concise subset of informative candidates, resulting in fewer computational candidates and enhanced matching efficiency. The method comprises a self-pruning stage for selecting reliable candidates and an interactive-pruning stage that identifies correlated patches at the coarse level. Our results reveal that HCPM significantly surpasses existing methods in terms of speed while maintaining high accuracy. The source code will be made available upon publication.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Adaptive Spot-Guided Transformer for Consistent Local Feature Matching 2023 Jiahuan Yu
Jiahao Chang
Jianfeng He
Tianzhu Zhang
Feng Wu
+ PDF Chat Adaptive Spot-Guided Transformer for Consistent Local Feature Matching 2023 Jiahuan Yu
Jiahao Chang
Jianfeng He
Tianzhu Zhang
Jiyang Yu
Feng Wu
+ PDF Chat LoFLAT: Local Feature Matching using Focused Linear Attention Transformer 2024 N. Cao
Renjie He
Yuchao Dai
Mingyi He
+ OAMatcher: An Overlapping Areas-based Network for Accurate Local Feature Matching 2023 Kun Dai
Tao Xie
Ke Wang
Zhiqiang Jiang
Ruifeng Li
Lijun Zhao
+ Gleo-Det: Deep Convolution Feature-Guided Detector with Local Entropy Optimization for Salient Points 2022 Chao Li
Yanan You
Wenli Zhou
+ PDF Chat Generalized Correspondence Matching via Flexible Hierarchical Refinement and Patch Descriptor Distillation 2024 Yu Han
Ziwei Long
Yanting Zhang
Jin Wu
Zhijun Fang
Rui Fan
+ TKwinFormer: Top k Window Attention in Vision Transformers for Feature Matching 2023 Yun Liao
Yide Di
Hao Zhou
Kaijun Zhu
Mingyu Lu
Yijia Zhang
Qing Duan
Junhui Liu
+ PDF Chat Adaptive Assignment for Geometry Aware Local Feature Matching 2023 Dihe Huang
Ying Chen
Yong Liu
Jianlin Liu
Shang Xu
Wenlong Wu
Yikang Ding
Fan Tang
Chengjie Wang
+ PDF Chat Local Feature Matching Using Deep Learning: A Survey 2024 Shibiao Xu
Shunpeng Chen
Rongtao Xu
Changwei Wang
Peng Lu
Li Guo
+ Are Semi-Dense Detector-Free Methods Good at Matching Local Features? 2024 Matthieu Vilain
Rémi Giraud
Hugo Germain
Guillaume Bourmaud
+ PDF Chat Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed 2024 Yifan Wang
Xingyi He
Sida Peng
Dongli Tan
Xiaowei Zhou
+ PDF Chat Progressive Correspondence Pruning by Consensus Learning 2021 Chen Zhao
Yixiao Ge
Feng Zhu
Rui Zhao
Hongsheng Li
Mathieu Salzmann
+ Progressive Correspondence Pruning by Consensus Learning 2021 Chen Zhao
Yixiao Ge
Feng Zhu
Rui Zhao
Hongsheng Li
Mathieu Salzmann
+ MD-Net: Multi-Detector for Local Feature Extraction 2022 Emanuele Santellani
Christian Sormann
Mattia Rossi
Andreas Kühn
Friedrich Fraundorfer
+ PDF Chat Progressive Correspondence Pruning by Consensus Learning 2021 Chen Zhao
Yixiao Ge
Feng Zhu
Rui Zhao
Hongsheng Li
Mathieu Salzmann
+ PDF Chat MD-Net: Multi-Detector for Local Feature Extraction 2022 Emanuele Santellani
Christian Sormann
Mattia Rossi
Andreas Kühn
Friedrich Fraundorfer
+ ASpanFormer: Detector-Free Image Matching with Adaptive Span Transformer 2022 Hongkai Chen
Zixin Luo
Lei Zhou
Yurun Tian
Mingmin Zhen
Tian Fang
David McKinnon
Yanghai Tsin
Long Quan
+ PDF Chat LoFTR: Detector-Free Local Feature Matching with Transformers 2021 Jiaming Sun
Zehong Shen
Yuang Wang
Hujun Bao
Xiaowei Zhou
+ Adaptive Assignment for Geometry Aware Local Feature Matching 2022 Dihe Huang
Ying Chen
Shang Xu
Yong Liu
Wenlong Wu
Yikang Ding
Chengjie Wang
Fan Tang
+ PDF Chat HarrisZ+: Harris corner selection for next-gen image matching pipelines 2022 Fabio Bellavia
Dmytro Mishkin

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors