Type: Article
Publication Date: 2024-03-21
Citations: 3
DOI: https://doi.org/10.37256/cm.5120242604
For solving a system of nonlinear partial differential equations (PDE) emerging in an attractor one-dimensional chemotaxis model, we used a relatively new analytical method called the new modified homotopy perturbation method (NMHPM). We use NMHPM for solving one-dimensional Keller-Segel models for different types. Some properties show biologically acceptable dependency on parameter values, and numerical solutions are provided. NMHPM’s stability and reduced computing time provide it with a broader range of applications. The algorithm provides analytical approximations for different types of Keller-Segel equations. Some numerical illustrations are given to show the efficiency of the algorithm.