Proof of Aperiodicity of hat tile using the Golden Ratio

Type: Preprint

Publication Date: 2023-08-13

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2403.09640

Abstract

The Einstein tile is a novel type of non-periodic tile that can cover the plane without repeating itself. It has a simple shape that resembles a fedora. This research paper unveils the aperiodicity of the newly discovered Einstein tile using the golden ratio, marking a paradigm shift in the field of geometric tiling. This Through rigorous analysis, mathematical modeling, and computational simulations, we provide compelling evidence that the Einstein tile defies conventional periodicity, lacking any repeating pattern or translational symmetry. The unique properties of the Einstein tile open up new avenues for exploring aperiodic tiling systems and their implications in various scientific and technological domains. From cryptography to materials science, the aperiodicity of the Einstein tile presents exciting opportunities for advancements in diverse fields, expanding our understanding of tiling theory and inspiring future explorations into aperiodic structures.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Planar aperiodic tile sets: from Wang tiles to the Hat and Spectre monotiles 2023 Tinka Bruneau
Michael F. Whittaker
+ An aperiodic tiling of variable geometry made of two tiles, a triangle and a rhombus of any angle 2021 Vincent Van Dongen
+ An aperiodic tiling of variable geometry made of two tiles, a triangle and a rhombus of any angle. 2021 Vincent Van Dongen
+ PDF Chat A tiling algorithm for the aperiodic monotile Tile(1,1) 2024 Henning U. Voss
+ Direct Construction of Aperiodic Tilings with the Hat Monotile 2023 Ulrich Reitebuch
+ Lots of Aperiodic Sets of Tiles 2016 Chaim Goodman-Strauss
+ Lots of Aperiodic Sets of Tiles 2016 Chaim Goodman-Strauss
+ An aperiodic monotile for the tiler 2022 Vincent Van Dongen
+ Proof of Aperiodicity of Hat Tile Using the Golden Ratio 2023 Saksham Sharma
+ An aperiodic tiling made of one tile, a triangle 2021 Vincent Van Dongen
+ An aperiodic tiling made of one tile, a triangle. 2021 Vincent Van Dongen
+ PDF Chat Golden-Ratio-Based Rectangular Tilings 2017 Mark Bryant
David Hobill
+ A self-ruling monotile for aperiodic tiling 2022 Pierre Gradit
Vincent Van Dongen
+ Aperiodic monotiles: from geometry to groups 2024 Thierry Coulbois
Anahí Gajardo
P. Guillon
Victor Lutfalla
+ Tegula -- exploring a galaxy of two-dimensional periodic tilings 2020 Rüdiger Zeller
Olaf Delgado Friedrichs
Daniel H. Huson
+ PDF Chat A self-similar aperiodic set of 19 Wang tiles 2018 Sébastien Labbé
+ Tessellations 2020 R. W. Fathauer
+ PDF Chat Metallic mean Wang tiles II: the dynamics of an aperiodic computer chip 2024 Sébastien Labbé
+ PDF Chat Aperiodic approximants bridging quasicrystals and modulated structures 2024 Toranosuke Matsubara
Akihisa Koga
Atsushi Takano
Yushu Matsushita
Tomonari Dotera
+ PDF Chat Quasicrystal kirigami 2022 Lucy Liu
Gary P. T. Choi
L. Mahadevan

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors