Convexity properties related to Gauss hypergeometric function

Type: Preprint

Publication Date: 2024-02-22

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2403.09695

Abstract

We investigate the convexity property on $(0,1)$ of the functions $\varphi_{a,b,c}$ and $1/\varphi_{a,b,c}$, where $$\varphi_{a,b,c}(x)= \frac{c-\log(1-x)}{\,_2F_1(a,b,a+b,x)},$$ whenever $a,b\geq 0$ and $a+b\leq 1$. We Show that $\varphi_{a,b,c}$ (respectively $1/\varphi_{a,b,c}$) is strictly convex on $(0,1)$ if and only if $c\leq -2\gamma-\psi(a)-\psi(b),$ (respectively $c\geq\alpha_0$) and $\varphi_{a,b,c}$ (respectively $1/\varphi_{a,b,c}$) is strictly concave on $(0,1)$ if and only if $c\geq c(a,b)$ (respectively $c\in[\delta_-,\delta_+]$), where $\psi$ is the Polygamma function. This generalizes some problems posed by Yang and Tian and complete the study of convexity properties of functions studied by the author in [bouali]. As applications of the convexity and concavity, we establish among other inequalities, that for all $x\in(0,1)$, $a,b\in[0,1]$, $a+b\leq 1$ and $c\geq c(a,b)$ $$c+\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\leq \frac{c-\log(1-x)}{\,_2F_1(a,b,a+b,x)}+\frac{c-\log(x)}{\,_2F_1(a,b,a+b,1-x)}\leq\frac{(2c+2\log 2)}{\,_2{F}_1(a,b;a+b;1/2)},$$ and for all $x\in(0,1)$, $a,b\in[0,1]$, $a+b\leq 1$ and $c\in [\delta_-,\delta_+]$ $$\frac1c+\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\leq \frac{\,_2F_1(a,b,a+b,x)}{c-\log(1-x)}+\frac{\,_2F_1(a,b,a+b,1-x)}{c-\log(x)}\leq\frac{\,_2{F}_1(a,b;a+b;1/2)}{(2c+2\log 2)}.$$

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Some completely monotonic properties for the $(p,q )$-gamma function 2014 Valmir Krasniqi
Faton Merovci
+ PDF Chat Convexity and concavity of a class of functions related to the elliptic functions 2024 Mohamed Bouali
+ Some Completely Monotonic Properties for the (p;q)-Gamma Function 2012 Valmir Krasniqi
Faton Merovci
+ Convexities Of Some Functions Involving The Polygamma Functions 2008 Jian Cao
Daā€Wei Niu
Feng Qi
+ On the order of convexity for the shifted hypergeometric functions 2020 Limin Wang
+ Close-to-Convexity properties of Clausen's Hypergeometric Function $_3F_2(a,b,c;d,e;z)$ 2020 K. Chandrasekran
D. J. Prabhakaran
+ Close-to-Convexity properties of Clausen's Hypergeometric Function $_3F_2(a,b,c;d,e;z)$ 2020 K. Chandrasekran
D. J. Prabhakaran
+ Inequalities for the Gaussian hypergeometric function 2014 Song Ying
+ Log-convexity and log-concavity of hypergeometric-like functions 2009 Dmitrii Karp
Š”. Šœ. Š”ŠøтŠ½ŠøŠŗ
+ PDF Chat THE GEOMETRIC CONVEXITY OF A FUNCTION INVOLVING GAMMA FUNCTION WITH APPLICATIONS 2010 Yuā€Ming Chu
Xiaoming Zhang
Zhiā€Hua Zhang
+ Complete monotonicity of a family of functions involving the tri- and tetra-gamma functions 2013 Feng Qi
+ Convexity and Gamma function 1999 Josip ā€ŽPečarić
Giampietro Allasia
Carla Giordano
+ PDF Chat On the convexity of some trace functions 2023 Guanghua Shi
+ Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications 2021 Ye-Cong Han
Chuan-Yu Cai
Ti-Ren Huang
+ An analytical investigatıon on starlikeness and convexity properties for hypergeometric functions 2020 İsmet Yıldız
Alaattin Akyar
+ The Geometrically Convexity of [Ī“(x)]~(1/x)Ā·e~(Ī±/x) and Its Application 2006 Tieā€Quan Xu
+ PDF Chat Some inequalities involving the polygamma functions 2019 Lichun Liang
Bin Zhao
Aibing Li
+ PDF Chat The monotonicity and convexity of a function involving psi function with applications 2016 Bangcheng Sun
Zhiming Liu
Qiang Li
Shenzhou Zheng
+ Some Sufficient Conditions for Uniform Convexity of Normalized 1F2 Function 2023 Deepak Bansal
Shilpi Jain
+ Complete monotonicity properties of a function involving the polygamma function 2018 Kwara Nantomah

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors