Product of Gaussian Mixture Diffusion Models

Type: Article

Publication Date: 2024-03-15

Citations: 0

DOI: https://doi.org/10.1007/s10851-024-01180-3

Abstract

Abstract In this work, we tackle the problem of estimating the density $$ f_X $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>f</mml:mi><mml:mi>X</mml:mi></mml:msub></mml:math> of a random variable $$ X $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>X</mml:mi></mml:math> by successive smoothing, such that the smoothed random variable $$ Y $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Y</mml:mi></mml:math> fulfills the diffusion partial differential equation $$ (\partial _t - \Delta _1)f_Y(\,\cdot \,, t) = 0 $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>∂</mml:mi><mml:mi>t</mml:mi></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mi>Δ</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mi>Y</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mspace/><mml:mo>·</mml:mo><mml:mspace/><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> with initial condition $$ f_Y(\,\cdot \,, 0) = f_X $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mi>Y</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mspace/><mml:mo>·</mml:mo><mml:mspace/><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msub><mml:mi>f</mml:mi><mml:mi>X</mml:mi></mml:msub></mml:mrow></mml:math> . We propose a product-of-experts-type model utilizing Gaussian mixture experts and study configurations that admit an analytic expression for $$ f_Y (\,\cdot \,, t) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>f</mml:mi><mml:mi>Y</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mspace/><mml:mo>·</mml:mo><mml:mspace/><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> . In particular, with a focus on image processing, we derive conditions for models acting on filter, wavelet, and shearlet responses. Our construction naturally allows the model to be trained simultaneously over the entire diffusion horizon using empirical Bayes. We show numerical results for image denoising where our models are competitive while being tractable, interpretable, and having only a small number of learnable parameters. As a by-product, our models can be used for reliable noise level estimation, allowing blind denoising of images corrupted by heteroscedastic noise.

Locations

  • Journal of Mathematical Imaging and Vision - View - PDF

Similar Works

Action Title Year Authors
+ Product of Gaussian Mixture Diffusion Models 2023 Martin Zach
Erich Kobler
Antonin Chambolle
Thomas Pock
+ Diffusion model conditioning on gaussian mixture model and negative gaussian mixture gradient 2024 Weiguo Lu
Xuan Wu
Deng Ding
Jinqiao Duan
Jirong Zhuang
Gangnan Yuan
+ PDF Chat Explicit Diffusion of Gaussian Mixture Model Based Image Priors 2023 Martin Zach
Thomas Pock
Erich Kobler
Antonin Chambolle
+ Explicit Diffusion of Gaussian Mixture Model Based Image Priors 2023 Martin Zach
Thomas Pock
Erich Kobler
Antonin Chambolle
+ Gaussian Mixture Models 2018 Ankur Moitra
+ PDF Chat Denoising Diffusion Probabilistic Models in Six Simple Steps 2024 Richard E. Turner
Cristiana-Diana Diaconu
Stratis Markou
Aliaksandra Shysheya
Andrew Y. K. Foong
Bruno Mlodozeniec
+ PDF Chat Gaussian process deconvolution 2023 Felipe Tobar
A. Robert
Jorge F. Silva
+ PDF Chat Mixtures of distributions 1970 John Robinson
+ Mixture Model 2023 Rohan A. Baxter
+ Mixture Model 2017 Rohan A. Baxter
+ Mixture Model 2016 Rohan A. Baxter
+ Mixtures of marginal models 2000 Ori Rosen
Wenxin Jiang
Martin A. Tanner
+ PDF Chat Diffusion Model from Scratch 2024 Zhen Wang
Dong Yunyun
+ Approximation of the posterior density for diffusion processes 2005 J. A. Cano
Mathieu Kessler
Diego Salmerón
+ Mixture Data Analysis 2014 John A. Cornell
+ Mixture Models 2004 Steffen Fieuws
Bart Spiessens
Karen Draney
+ A diffusion-based spatio-temporal extension of Gaussian Matérn fields 2020 Finn Lindgren
Haakon Bakka
David Bolin
Elias Teixeira Krainski
Håvard Rue
+ Gaussian process modelling with Gaussian mixture likelihood 2019 Atefeh Daemi
Hariprasad Kodamana
Biao Huang
+ Statistical estimation of a mixture of Gaussian distributions 1995 Римантас Рудзкис
Marijus Radavičius
+ Mixture Models 2010 Bruce G. Lindsay
Michael Stewart

Works That Cite This (0)

Action Title Year Authors