Applications of zero-free regions on averages and shifted convolution sums of Hecke eigenvalues

Type: Article

Publication Date: 2024-02-21

Citations: 0

DOI: https://doi.org/10.1142/s1793042124500775

Abstract

By assuming Vinogradov–Korobov-type zero-free regions and the generalized Ramanujan–Petersson conjecture, we establish nontrivial upper bounds for almost all short sums of Fourier coefficients of Hecke–Maass cusp forms for [Formula: see text]. As applications, we obtain nontrivial upper bounds for the averages of shifted sums involving coefficients of the Hecke–Maass cusp forms for [Formula: see text]. Furthermore, we present a conditional result regarding sign changes of these coefficients.

Locations

  • International Journal of Number Theory - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Applications of zero-free regions on averages and shifted convolution sums of Hecke eigenvalues 2021 Jiseong Kim
+ Sums of coefficients of L-functions and applications 2016 Yujiao Jiang
Guangshi Lü
+ On Short Sums Involving Fourier Coefficients of Maass Forms 2018 Jesse Jääsaari
+ On Short Sums Involving Fourier Coefficients of Maass Forms 2018 Jesse Jääsaari
+ PDF Chat On some estimates involving Fourier coefficients of Maass cusp forms 2022 Qingfeng Sun
Hui Wang
+ Estimates of shifted convolution sums involving Fourier coefficients of Hecke–Maass eigenform 2020 Abhash Kumar Jha
Lalit Vaishya
+ On sums of Fourier coefficients of Maass cusp forms 2016 Yujiao Jiang
Guangshi Lü
+ On sum of Hecke eigenvalue squares over primes in very short intervals 2021 Jiseong Kim
+ Jutila's circle method and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mi mathvariant="normal">GL</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>×</mml:mo><mml:mrow><mml:mi mathvariant="normal">GL</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn mathvariant="normal">2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> shifted convolution sums 2022 Guangwei Hu
Guangshi Lü
+ On squares of Fourier coefficients twist exponential functions with applications 2023 Wei Zhang
+ PDF Chat A Generalization of kohnen’s estimates for fourier coefficients of siegel cusp forms 1997 Taro Horie
+ Approximations of $SL(3,\mathbb{Z})$ Hecke-Maass L-Functions and zero density estimates 2022 Jiseong Kim
+ PDF Chat Landau and Ramanujan approximations for divisor sums and coefficients of cusp forms 2022 Alexandru Ciolan
Alessandro Languasco
Pieter Moree
+ Monotone chains of Fourier coefficients of Hecke cusp forms 2020 Oleksiy Klurman
Alexander P. Mangerel
+ PDF Chat Shifted convolution of cusp-forms with $$\theta $$ θ -series 2015 Guangshi Lü
Jie Wu
Wenguang Zhai
+ On some estimates involving Fourier coefficients of Maass cusp forms 2022 Qing-Feng Sun
Hui Wang
+ PDF Chat On certain kernel functions and shifted convolution sums of the Fourier coefficients 2024 Kampamolla Venkatasubbareddy
Ayyadurai Sankaranarayanan
+ On certain kernel functions and shifted convolution sums of the Fourier coefficients 2023 K. Venkatasubbareddy
A. Sankaranarayanan
+ The spectral decomposition of shifted convolution sums 2007 Valentin Blomer
Gergely Harcos
+ The spectral decomposition of shifted convolution sums 2007 Valentin Blomer
Gergely Harcos

Works That Cite This (0)

Action Title Year Authors