A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation

Type: Preprint

Publication Date: 2024-03-07

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2403.04726

Abstract

We study the algorithmic problem of sparse mean estimation in the presence of adversarial outliers. Specifically, the algorithm observes a \emph{corrupted} set of samples from $\mathcal{N}(\mu,\mathbf{I}_d)$, where the unknown mean $\mu \in \mathbb{R}^d$ is constrained to be $k$-sparse. A series of prior works has developed efficient algorithms for robust sparse mean estimation with sample complexity $\mathrm{poly}(k,\log d, 1/\epsilon)$ and runtime $d^2 \mathrm{poly}(k,\log d,1/\epsilon)$, where $\epsilon$ is the fraction of contamination. In particular, the fastest runtime of existing algorithms is quadratic ($\Omega(d^2)$), which can be prohibitive in high dimensions. This quadratic barrier in the runtime stems from the reliance of these algorithms on the sample covariance matrix, which is of size $d^2$. Our main contribution is an algorithm for robust sparse mean estimation which runs in \emph{subquadratic} time using $\mathrm{poly}(k,\log d,1/\epsilon)$ samples. We also provide analogous results for robust sparse PCA. Our results build on algorithmic advances in detecting weak correlations, a generalized version of the light-bulb problem by Valiant.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Robust Sparse Estimation Tasks in High Dimensions 2017 Jerry Li
+ Robust Sparse Mean Estimation via Sum of Squares 2022 Ilias Diakonikolas
Daniel M. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
+ Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering 2019 Ilias Diakonikolas
Daniel M. Kane
Sushrut Karmalkar
Eric Price
Alistair Stewart
+ Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering 2019 Ilias Diakonikolas
Sushrut Karmalkar
Daniel M. Kane
Eric Price
Alistair Stewart
+ PDF Chat Outlier-robust Mean Estimation near the Breakdown Point via Sum-of-Squares 2024 Hongjie Chen
Devarajan Sridharan
David Steurer
+ List-Decodable Sparse Mean Estimation 2022 Shiwei Zeng
Jie Shen
+ PDF Chat Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination 2024 Ilias Diakonikolas
Daniel M. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
+ How Hard Is Robust Mean Estimation? 2019 Samuel B. Hopkins
Jerry Li
+ High-Dimensional Robust Mean Estimation in Nearly-Linear Time 2018 Yu Cheng
Ilias Diakonikolas
Rong Ge
+ How Hard Is Robust Mean Estimation 2019 Samuel B. Hopkins
Jerry Li
+ Robust Sparse Mean Estimation via Incremental Learning 2023 Jianhao Ma
Rui Chen
Yinghui He
Salar Fattahi
Wei Hu
+ PDF Chat High-Dimensional Robust Mean Estimation in Nearly-Linear Time 2019 Yu Cheng
Ilias Diakonikolas
Rong Ge
+ PDF Chat Robust sub-Gaussian estimation of a mean vector in nearly linear time 2022 Jules Depersin
Guillaume Lecué
+ PDF Chat Higher degree sum-of-squares relaxations robust against oblivious outliers 2023 Tommaso d'Orsi
Rajai Nasser
Gleb Novikov
David Steurer
+ High-Dimensional Robust Mean Estimation via Gradient Descent 2020 Yu Cheng
Ilias Diakonikolas
Rong Ge
Mahdi Soltanolkotabi
+ Agnostic Estimation of Mean and Covariance 2016 Kevin A. Lai
Anup Rao
Santosh Vempala
+ Agnostic Estimation of Mean and Covariance 2016 Kevin A. Lai
Anup Rao
Santosh Vempala
+ Robust Estimation of Covariance Matrices: Adversarial Contamination and Beyond 2022 Stanislav Minsker
Lang Wang
+ Higher degree sum-of-squares relaxations robust against oblivious outliers 2022 Tommaso d'Orsi
Rajai Nasser
Gleb Novikov
David Steurer
+ Consistent Estimation for PCA and Sparse Regression with Oblivious Outliers 2021 Tommaso d'Orsi
Chih-Hung Liu
Rajai Nasser
Gleb Novikov
David Steurer
Stefan Tiegel

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors