Type: Preprint
Publication Date: 2024-03-06
Citations: 0
DOI: https://doi.org/10.48550/arxiv.2403.03549
Suppose that $k\geq 2$ and $A$ is a non-empty subset of a finite abelian group $G$ with $|G|>1$. Then the cardinality of the restricted sumset $$ k^\wedge A:=\{a_1+\cdots+a_k:\,a_1,\ldots,a_k\in A,\ a_i\neq a_j\text{ for }i\neq j\} $$ is at least $$ \min\{p(G), k|A|-k^2+1\}, $$ where $p(G)$ denotes the least prime divisor of $|G|$.
Action | Title | Year | Authors |
---|
Action | Title | Year | Authors |
---|