Type: Preprint
Publication Date: 2024-02-23
Citations: 0
DOI: https://doi.org/10.48550/arxiv.2402.15676
Let $\mathcal{H}$ be a complex, separable Hilbert space, and set $\mathfrak{c}($NIL$_2)=\{ MN - NM : N, M \in \mathcal{B}(\mathcal{H}), M^2 = 0 = N^2 \}$. When $\dim\, \mathcal{H}$ is finite, we characterise the set $\mathfrak{c}($NIL$_2)$ and its norm-closure CLOS$(\mathfrak{c}($NIL$_2))$. In the infinite-dimensional setting, we characterise the intersection of CLOS$(\mathfrak{c}($NIL$_2))$ with the set of biquasitriangular operators, and we exhibit an index obstruction to belonging to CLOS$(\mathfrak{c}($NIL$_2))$.
Action | Title | Year | Authors |
---|
Action | Title | Year | Authors |
---|