Constant $Q$-curvature metrics on a product Riemannian manifold

Type: Preprint

Publication Date: 2024-02-22

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2402.14675

Abstract

Let $(M,g)$ be an analytic Riemannian manifold of dimension $n \geq 5$. In this paper, we consider the so-called constant $Q$-curvature equation \[ \varepsilon^4\Delta_{g}^2 u -\varepsilon^2 b \Delta_{g} u +a u = u^{p} , \qquad \text{in } M, \quad u>0, \quad u\in H^2_g(M) \] where $a,b$ are positive constants such that $b^2-4 a>0$, $p$ is a sub-critical exponent $1<p<2^\#-1=\frac{n+4}{n-4}$, $\Delta_g$ denotes the Laplace-Beltrami operator and $\Delta_g^2:=\Delta_{g}(\Delta_{g})$ is the bilaplacian operator on $M$. We show that, if $\varepsilon>0$ is small enough, then positive solutions to the above constant $Q$-curvature equation are generated by a maximum or minimum point of the function $\tau_g$, given by \[ \tau_g(\xi):= \sum_{i, j=1}^{n} \frac{\partial^{2} g_{\xi}^{i i}}{\partial z_{j}^{2}}(0), \] where $g_{\xi}^{i j}$ denotes the components of the inverse of the metric $g$ in geodesic normal coordinates. This result shows that the geometry of $M$ plays a crucial role in finding solutions to the equation above and provides a metric of constant $Q$-curvature on a product manifold of the form $(M\times X, g+\varepsilon^2 h)$ where $(M,g)$ is flat and closed, and $(X,h)$ any $m$-dimensional Einstein Riemannian manifold, $m\geq 3$.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The $Q$-curvature on a 4-dimensional Riemannian manifold $(M,g)$ with $\int_MQdV_g=8\pi^2$ 2006 Jiayu Li
Yuxiang Li
Pan Liu
+ Non-compactness of the Prescribed Q-curvature Problem in Large Dimensions 2009 Juncheng Wei
Chunyi Zhao
+ The $Q$-curvature on a 4-dimensional Riemannian manifold $(M,g)$ with $\int_MQdV_g=8π^2$ 2006 Jiayu Li
Yuxiang Li
Pan Liu
+ The<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>Q</mml:mi></mml:math>-curvature on a 4-dimensional Riemannian manifold<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mi>M</mml:mi><mml:mo>,</mml:mo><mml:mi>g</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.gif" … 2012 Jiayu Li
Yuxiang Li
Pan Liu
+ A nonlocal $\mathbf Q$-curvature flow on a class of closed manifolds of dimension $\mathbf{n \geq 5}$ 2015 Xuezhang Chen
+ CURVATURE EIGENVALUES OF THE Q-METRIC 2024 Nurzada Beissen
Hernando Quevedo
Saken Toktarbay
M. Zhakipova
M. Alimkulova
+ Q curvature on a class of manifolds with dimension at least 5 2014 Fengbo Hang
Paul Yang
+ PDF Chat <i>Q</i>‐Curvature on a Class of Manifolds with Dimension at Least 5 2015 Fengbo Hang
Paul Yang
+ Bubbling of the prescribed $Q$-curvature equation on $4$-manifolds in the null case 2019 Quốc Anh Ngô
Hong Zhang
+ Connected sum construction of constant Q-curvature manifolds in higher dimensions 2013 Yueh-Ju Lin
+ Connected sum construction of constant Q-curvature manifolds in higher dimensions 2015 Yueh-Ju Lin
+ The Prescribed $Q$-Curvature Flow for Arbitrary Even Dimension in a Critical Case 2021 Yuchen Bi
Jiayu Li
+ PDF Chat Prescribed Q-curvature flow on closed manifolds of even dimension 2020 Quốc Anh Ngô
Hong Zhang
+ Uniqueness of conformal metrics with constant Q-curvature on closed Einstein manifolds 2022 Jérôme Vétois
+ Prescribed Q-curvature problem on closed 4-Riemannian manifolds in the null case 2007 Yuxin Ge
Xingwang Xu
+ On the stability of L^p-norm of the Riemannian and Ricci curvature tensor 2012 Soma Maity
+ "Large" conformal metrics of prescribed Q-curvature in the negative case 2016 Luca Galimberti
+ PDF Chat “Large” conformal metrics of prescribed $$\varvec{Q}$$-curvature in the negative case 2017 Luca Galimberti
+ On the stability of l^p-norm of the Riemannian curvature tensor and Ricci tensor 2012 Soma Maity
+ <i>Q</i> Curvature on a Class of 3‐Manifolds 2014 Fengbo Hang
Paul Yang

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors