The structure of arbitrary Conze–Lesigne systems

Type: Article

Publication Date: 2024-02-21

Citations: 1

DOI: https://doi.org/10.1090/cams/31

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a countable abelian group. An (abstract) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-system <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper X"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {X}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> - that is, an (abstract) probability space equipped with an (abstract) probability-preserving action of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> - is said to be a <italic>Conze–Lesigne system</italic> if it is equal to its second Host–Kra–Ziegler factor <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Z squared left-parenthesis normal upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">Z</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">X</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {Z}^2(\mathrm {X})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The main result of this paper is a structural description of such Conze–Lesigne systems for arbitrary countable abelian <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, namely that they are the inverse limit of translational systems <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript n Baseline slash normal upper Lamda Subscript n"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">G_n/\Lambda _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arising from locally compact nilpotent groups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G Subscript n"> <mml:semantics> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">G_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of nilpotency class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, quotiented by a lattice <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda Subscript n"> <mml:semantics> <mml:msub> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">\Lambda _n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Results of this type were previously known when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> was finitely generated, or the product of cyclic groups of prime order. In a companion paper, two of us will apply this structure theorem to obtain an inverse theorem for the Gowers <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U cubed left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>U</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U^3(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm for arbitrary finite abelian groups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Communications of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • Communications of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • Communications of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The flat model structure on 𝐂𝐡(𝐑) 2004 James Gillespie
+ PDF Chat General non-structure theory 2023 Saharon Shelah
+ ℬ-free sets and dynamics 2017 Aurelia Dymek
Stanisław Kasjan
Joanna Kułaga-Przymus
Mariusz Lemańczyk
+ Infinite transitivity for Calogero-Moser spaces 2020 Karine Kuyumzhiyan
+ Commutator maps, measure preservation, and 𝑇-systems 2009 Shelly Garion
Aner Shalev
+ PDF Restrictions of 𝐿^{𝑝} transforms 1971 Louis Pigno
+ PDF Paradoxical decompositions and invariant measures 1991 Piotr Zakrzewski
+ PDF Forbidden intersections 1987 Péter Frankl
Vojtěch Rödl
+ PDF Kaehler structures on 𝐾_{𝐂}/(𝐏,𝐏) 1997 Meng-Kiat Chuah
+ On the irreducibility of the iterates of 𝑥ⁿ-𝑏 2001 Lynda Major Danielson
Burton Fein
+ PDF 𝐿²(𝐺_{𝑄}\𝐺_{𝐴}) is not always multiplicity-free 1976 Lawrence Corwin
+ PDF On ℎ𝑜𝑚dim𝑀𝑈_{*}(𝑋×𝑌) 1976 Duane O’Neill
+ Fusion systems on small 𝑝-groups 2012 David Craven
Adam Glesser
+ None 2004 L. El Kaoutit
José Gómez-Torrecillas
+ Cotorsion theories and splitters 2000 Rüdiger Göbel
Saharon Shelah
+ PDF Epicomplete Archimedean 𝑙-groups and vector lattices 1990 Richard N. Ball
Anthony W. Hager
+ PDF Cycles in 𝐶^{𝑟}-twists 1995 C. R. Carroll
+ The Baire property and precompact duality 2024 María V. Ferrer
Salvador Hernández
I. Sepúlveda
F. Javier Trigos-Arrieta
+ Finite Structures 1972 Gerald Berman
K.D. Fryer
+ PDF Baire sections for group homomorphisms 1982 Siegfried Graf
G. Mägerl