Weight decomposition of $\mathfrak{sl}_d(\mathbb R)$ with respect to the adjoint representation of $\mathfrak{so}(p,q)$

Type: Preprint

Publication Date: 2024-02-20

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2402.12929

Abstract

In this concise article, we compute the weight decomposition of $\mathfrak{sl}_d(\mathbb R)$ with respect to the adjoint representation of $\mathfrak{so}(p,q)$, where $d=p+q$ and demonstrate in detail that $\mathfrak{sl}_d(\mathbb R)$ comprises two irreducible $\mathfrak{so}(p,q)$-invariant subspaces. This can be employed to establish the well-known fact that the identity component of $\mathrm{SO}(p,q)$ is a maximal connected subgroup of $\mathrm{SL}_d(\mathbb R)$.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ $(\mathfrak{g},K)$-module of $\mathrm{O}(p,q)$ associated with the finite-dimensional representation of $\mathfrak{sl}_2$ 2018 Takashi Hashimoto
+ The positive even subalgebra of $U_q(\mathfrak{sl}_2)$ and its finite-dimensional irreducible modules 2015 Alison Gordon Lynch
+ The positive even subalgebra of $U_q(\mathfrak{sl}_2)$ and its finite-dimensional irreducible modules 2015 Alison Gordon Lynch
+ Spin Representations of $$\mathfrak{s}{\mathfrak{d}_m}\mathbb{C}$$ 2004 William Fulton
Joe Harris
+ Simple bounded weight modules of $\displaystyle{\mathfrak{sl}(\infty)}$, $\displaystyle{\mathfrak{o}(\infty)}$, $\displaystyle{\mathfrak{sp}(\infty)}$ 2018 Dimitar Grantcharov
Ivan Penkov
+ Simple bounded weight modules of $\displaystyle{\mathfrak{sl}(\infty)}$, $\displaystyle{\mathfrak{o}(\infty)}$, $\displaystyle{\mathfrak{sp}(\infty)}$ 2018 Dimitar Grantcharov
Ivan Penkov
+ Branching rules for finite-dimensional $\mathcal{U}_q(\mathfrak{su}(3))$-representations with respect to a right coideal subalgebra 2016 Noud Aldenhoven
Erik Koelink
Pablo Romรกn
+ Branching rules for finite-dimensional $\mathcal{U}_q(\mathfrak{su}(3))$-representations with respect to a right coideal subalgebra 2016 Noud Aldenhoven
Erik Koelink
Pablo Romรกn
+ Annihilator of $({\mathfrak g},K)$-modules of ${\mathrm O}(p,q)$ 2022 Takashi Hashimoto
+ Representations of $$\mathfrak{s}\mathfrak{l}_n$$ 2006 Jean-Pierre Serre
+ PDF Chat Higher symmetries of powers of the Laplacian and rings of differential operators 2017 Thierry Levasseur
J. T. Stafford
+ Coupling Algorithm for $\mathrm{Sp}(3,R)$ Irreducible Representations 2014 James F. St. Germaine-Fuller
Anna E. McCoy
M. A. Caprio
+ PDF Chat Branching Rules for Finite-Dimensional U q ( ๐–˜ ๐–š ( 3 ) ) $\mathcal {U}_{q}(\mathfrak {su}(3))$ -Representations with Respect to a Right Coideal Subalgebra 2017 Noud Aldenhoven
Erik Koelink
Pablo Romรกn
+ The $$\mathrm {PGSp}_{1,1}({\mathbb {A}})$$-distinguished representations 2020 Hengfei Lu
+ Description of irreducible finite-dimensonal representations 1973 D. ร… โ„ elobenko
+ Tensor product of irreducible characters of $\mathrm{GL}_2(\mathbb{F}_q)$ 2023 Archita Gupta
M Hassain
+ Irreducible representations of ๐‘Œ(๐”ค_{๐”‘}) 2007 Alexander Molev
+ Irreducible representations of ๐‘Œ(๐”ค๐”ฉ_{๐”‘}) 2007 Alexander Molev
+ The classification of the cyclic $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$--modules 2015 Paolo Casati
+ The unitary irreducible representations of $$\overline {SO} _0 $$ (4,2) 1983 E. Angelopoulos

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors