Computational complexity of the Weisfeiler-Leman dimension

Type: Preprint

Publication Date: 2024-02-18

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2402.11531

Abstract

The Weisfeiler-Leman dimension of a graph $G$ is the least number $k$ such that the $k$-dimensional Weisfeiler-Leman algorithm distinguishes $G$ from every other non-isomorphic graph. The dimension is a standard measure of the descriptive complexity of a graph and recently finds various applications in particular in the context of machine learning. In this paper, we study the computational complexity of computing the Weisfeiler-Leman dimension. We observe that in general the problem of deciding whether the Weisfeiler-Leman dimension of $G$ is at most $k$ is NP-hard. This is also true for the more restricted problem with graphs of color multiplicity at most 4. Therefore, we study parameterized and approximate versions of the problem. We give, for each fixed $k\geq 2$, a polynomial-time algorithm that decides whether the Weisfeiler-Leman dimension of a given graph of color multiplicity at most $5$ is at most $k$. Moreover, we show that for these color multiplicities this is optimal in the sense that this problem is P-hard under logspace-uniform $\text{AC}_0$-reductions. Furthermore, for each larger bound $c$ on the color multiplicity and each fixed $k \geq 2$, we provide a polynomial-time approximation algorithm for the abelian case: given a relational structure with abelian color classes of size at most $c$, the algorithm outputs either that its Weisfeiler-Leman dimension is at most $(k+1)c$ or that it is larger than $k$.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On Weisfeiler-Leman Invariance: Subgraph Counts and Related Graph Properties 2019 V. Arvind
Frank Fuhlbrück
Johannes Köbler
Oleg Verbitsky
+ PDF Chat An Upper Bound on the Weisfeiler-Leman Dimension 2024 Thomas Schneider
Pascal Schweitzer
+ PDF Chat The Power of the Weisfeiler--Leman Algorithm to Decompose Graphs 2022 Sandra Kiefer
Daniel Neuen
+ On Weisfeiler-Leman Invariance: Subgraph Counts and Related Graph Properties 2018 V. Arvind
Frank Fuhlbrück
Johannes Köbler
Oleg Verbitsky
+ Logarithmic Weisfeiler--Leman and Treewidth 2023 Michael Levet
Puck Rombach
Nicholas Sieger
+ On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters 2023 Matthias Lanzinger
Pablo Barceló
+ The Weisfeiler-Leman dimension of distance-hereditary graphs 2020 Alexander L. Gavrilyuk
Roman Nedela
Ilia Ponomarenko
+ Towards a practical $k$-dimensional Weisfeiler-Leman algorithm 2019 Christopher Morris
Petra Mutzel
+ Logarithmic Weisfeiler--Leman Identifies All Graphs of Bounded Rank Width 2023 Michael Levet
Nicholas Sieger
+ PDF Chat The Descriptive Complexity of Subgraph Isomorphism Without Numerics 2017 Oleg Verbitsky
Maksim Zhukovskii
+ PDF Chat The Descriptive Complexity of Subgraph Isomorphism Without Numerics 2018 Oleg Verbitsky
Maksim Zhukovskii
+ PDF Chat The Weisfeiler-Leman Dimension of Conjunctive Queries 2024 Andreas Göbel
Leslie Ann Goldberg
Marc Roth
+ The Complexity of Homomorphism Reconstructibility 2023 Jan Böker
Louis Härtel
Nina Runde
Tim Seppelt
Christoph Standke
+ PDF Chat The Weisfeiler–Leman Dimension of Distance-Hereditary Graphs 2023 Alexander L. Gavrilyuk
Roman Nedela
Ilia Ponomarenko
+ Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Rank Parameters 2023 Carla Groenland
Isja Mannens
Jesper Nederlof
Marta Piecyk
Paweł Rzążewski
+ The Weisfeiler-Leman Dimension of Existential Conjunctive Queries 2023 Andreas Göbel
Leslie Ann Goldberg
Marc Roth
+ PDF Chat Homomorphisms are a good basis for counting small subgraphs 2017 Radu Curticapean
Holger Dell
Dániel Marx
+ PDF Chat Compressing CFI Graphs and Lower Bounds for the Weisfeiler-Leman Refinements 2023 Martin Grohe
Moritz Lichter
Daniel Neuen
Pascal Schweitzer
+ Compressing CFI Graphs and Lower Bounds for the Weisfeiler-Leman Refinements 2023 Martin Grohe
Moritz Lichter
Daniel Neuen
Pascal Schweitzer
+ WL meet VC 2023 Christopher G. Morris
Floris Geerts
Jan Tönshoff
Martin Grohe

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors