The variance and correlations of the divisor function in $${\mathbb {F}}_q [T]$$, and Hankel matrices

Type: Article

Publication Date: 2024-02-17

Citations: 0

DOI: https://doi.org/10.1007/s40687-023-00418-7

Abstract

Abstract We prove an exact formula for the variance of the divisor function over short intervals in $${\mathcal {A}}:= {\mathbb {F}}_q [T]$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>T</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where q is a prime power; and for correlations of the form $$d(A) d(A+B)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> <mml:mi>d</mml:mi> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>+</mml:mo> <mml:mi>B</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , where we average both A and B over certain intervals in $${\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> </mml:math> . We also obtain an exact formula for correlations of the form $$d(KQ+N) d (N)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>(</mml:mo> <mml:mi>K</mml:mi> <mml:mi>Q</mml:mi> <mml:mo>+</mml:mo> <mml:mi>N</mml:mi> <mml:mo>)</mml:mo> <mml:mi>d</mml:mi> <mml:mo>(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , where Q is prime and K and N are averaged over certain intervals with $${{\,\textrm{deg}\,}}N \le {{\,\textrm{deg}\,}}Q -1 \le {{\,\textrm{deg}\,}}K$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mspace /> <mml:mtext>deg</mml:mtext> <mml:mspace /> </mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≤</mml:mo> <mml:mrow> <mml:mspace /> <mml:mtext>deg</mml:mtext> <mml:mspace /> </mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mrow> <mml:mspace /> <mml:mtext>deg</mml:mtext> <mml:mspace /> </mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> </mml:math> ; and we demonstrate that $$d(KQ+N)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>(</mml:mo> <mml:mi>K</mml:mi> <mml:mi>Q</mml:mi> <mml:mo>+</mml:mo> <mml:mi>N</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> and d ( N ) are uncorrelated. We generalize our results to $$\sigma _z$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>z</mml:mi> </mml:msub> </mml:math> defined by $$\sigma _z (A):= \sum _{E \mid A} |A |^z$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>z</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>∣</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:msub> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>A</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mi>z</mml:mi> </mml:msup> </mml:mrow> </mml:math> for all monics $$A \in {\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> . Our approach is to use the orthogonality relations of additive characters on $${\mathbb {F}}_q$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> to translate the problems to ones involving the ranks of Hankel matrices over $${\mathbb {F}}_q$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> . We prove several results regarding the rank and kernel structure of these matrices, thus demonstrating their number-theoretic properties. We also discuss extending our method to other divisor sums, such as those involving $$d_k$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:math> .

Locations

  • Research in the Mathematical Sciences - View - PDF

Similar Works

Action Title Year Authors
+ The Variance and Correlations of the Divisor Function in $\mathbb{F}_q [T]$, and Hankel Matrices 2021 Michael Yiasemides
+ The Variance of the Sum of Two Squares over Intervals in $\mathbb{F}_q [T]$: I 2022 Michael Yiasemides
+ The Variance of the Divisor Function in $\mathbb{F}_p [T]$ and Hankel Matrices 2021 Michael Yiasemides
+ The variance of a restricted sum-of-squares function over short intervals in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">[</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy="false">]</mml:mo></mml:math> 2023 Michael Yiasemides
+ PDF Chat A lower bound for the variance of generalized divisor functions in arithmetic progressions 2021 Daniele Mastrostefano
+ PDF Chat Divisor-bounded multiplicative functions in short intervals 2023 Alexander P. Mangerel
+ The Mean Square of Divisor Function 2013 Chaohua Jia
Ayyadurai Sankaranarayanan
+ PDF Chat On the variance of squarefree integers in short intervals and arithmetic progressions 2021 Ofir Gorodetsky
Kaisa Matomäki
Maksym Radziwiłł
Brad Rodgers
+ PDF Chat Sharp power-type Heronian mean bounds for the Sándor and Yang means 2015 Shuang-Shuang Zhou
Wei-Mao Qian
Yu‐Ming Chu
Xiaohui Zhang
+ On the variance of sums of divisor functions in short intervals 2015 Stephen Lester
+ Mean value estimates of the generalized gcd function 2020 Sneha Chaubey
Shivani Goel
+ PDF Chat Correlations of the von Mangoldt and higher divisor functions II: divisor correlations in short ranges 2019 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
+ PDF Chat Generations of Correlation Averages 2014 Giovanni Coppola
Maurizio Laporta
+ On the variance of sums of divisor functions in short intervals 2015 Stephen Lester
+ On the variance of sums of divisor functions in short intervals 2015 Stephen Lester
+ Lower bounds for the variance of sequences in arithmetic progressions: primes and divisor functions 2016 Adam J. Harper
K. Soundararajan
+ Lower bounds for the variance of sequences in arithmetic progressions: primes and divisor functions 2016 Adam J. Harper
K. Soundararajan
+ PDF Chat LOWER BOUNDS FOR THE VARIANCE OF SEQUENCES IN ARITHMETIC PROGRESSIONS: PRIMES AND DIVISOR FUNCTIONS 2016 Adam J. Harper
K. Soundararajan
+ PDF Chat The mean square of the divisor function 2014 Chaohua Jia
Ayyadurai Sankaranarayanan
+ On Additive Divisor Sums and minorants of divisor functions 2019 Kevin M. Smith
Julio Andrade

Works That Cite This (0)

Action Title Year Authors