Multiple normalized solutions for the planar Schrödinger–Poisson system with critical exponential growth

Type: Article

Publication Date: 2024-02-16

Citations: 2

DOI: https://doi.org/10.1007/s00209-024-03432-9

Abstract

Abstract The paper deals with the existence of normalized solutions for the following Schrödinger–Poisson system with $$L^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -constraint: $$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+\lambda u+\mu \left( \log |\cdot |*u^2\right) u=\left( e^{u^2}-1-u^2\right) u, &amp;{} x\in {\mathbb {R}}^2, \\ \int _{{\mathbb {R}}^2}u^2\textrm{d}x=c, \\ \end{array} \right. \end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>μ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mo>log</mml:mo> <mml:mo>|</mml:mo> <mml:mo>·</mml:mo> <mml:mo>|</mml:mo> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> <mml:msup> <mml:mi>u</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mfenced> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mfenced> <mml:msup> <mml:mi>e</mml:mi> <mml:msup> <mml:mi>u</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:msup> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mfenced> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mrow /> <mml:msub> <mml:mo>∫</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:msub> <mml:msup> <mml:mi>u</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mtext>d</mml:mtext> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mi>c</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:mfenced> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where $$\mu &gt;0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$\lambda \in {\mathbb {R}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> will arise as a Lagrange multiplier and the nonlinearity enjoys critical exponential growth of Trudinger-Moser type. By specifying explicit conditions on the energy level c , we detect a geometry of local minimum and a minimax structure for the corresponding energy functional, and prove the existence of two solutions, one being a local minimizer and one of mountain-pass type. In particular, to catch a second solution of mountain-pass type, some sharp estimates of energy levels are proposed, suggesting a new threshold of compactness in the $$L^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -constraint. Our study extends and complements the results of Cingolani–Jeanjean (SIAM J Math Anal 51(4): 3533-3568, 2019) dealing with the power nonlinearity $$a|u|^{p-2}u$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>|</mml:mo> <mml:mi>u</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> </mml:mrow> </mml:math> in the case of $$a&gt;0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> and $$p&gt;4$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> , which seems to be the first contribution in the context of normalized solutions. Our model presents some new difficulties due to the intricate interplay between a logarithmic convolution potential and a nonlinear term of critical exponential type and requires a novel analysis and the implementation of new ideas, especially in the compactness argument. We believe that our approach will open the door to the study of other $$L^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -constrained problems with critical exponential growth, and the new underlying ideas are of future development and applicability.

Locations

  • Mathematische Zeitschrift - View - PDF

Similar Works

Action Title Year Authors
+ Multiple normalized solutions to the nonlinear Schrödinger–Poisson system with the <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"> <a:msup> <a:mi>L</a:mi> <a:mn>2</a:mn> </a:msup> </a:math>-subcritical growth 2024 Siwei Wei
Kaimin Teng
+ Existence of normalized solutions for the planar Schrödinger-Poisson system with exponential critical nonlinearity 2021 Claudianor O. Alves
Eduardo de Souza Böer
Olı́mpio H. Miyagaki
+ PDF Chat Multiple positive solutions for the Schrödinger-Poisson equation with critical growth 2021 Chen Caixia
Aixia Qian
+ PDF Chat A planar Schrödinger–Newton system with Trudinger–Moser critical growth 2023 Zhisu Liu
Vicenţiu D. Rădulescu
Jianjun Zhang
+ PDF Chat Normalized solutions for a fractional Schrödinger–Poisson system with critical growth 2024 Xiaoming He
Yuxi Meng
Marco Squassina
+ Ground state solutions for Schrödinger–Poisson system with critical exponential growth in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e54" altimg="si6.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> 2021 Fangfang Liao
Xiaoping Wang
+ Normalized solutions for a coupled Schrödinger systems in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> with exponential critical growth: Mass super-critical case 2024 Shengbing Deng
Ling Huang
Jianjun Zhang
Xuexiu Zhong
+ Multiple normalized solutions to Schrödinger equations in $$\mathbb {R}^N$$ with critical growth and potential 2024 Zheng Xie
Jing Chen
Yawen Tan
+ PDF Chat Existence of normalized solutions for the planar Schrödinger-Poisson system with exponential critical nonlinearity 2023 Claudianor O. Alves
Eduardo de Souza Böer
Olı́mpio H. Miyagaki
+ Normalized solutions of Schrödinger equations involving Moser-Trudinger critical growth 2024 Gui-Dong Li
Jianjun Zhang
+ PDF Chat Multiple positive solutions for a class of concave-convex Schrödinger-Poisson-Slater equations with critical exponent 2024 Tian-Tian Zheng
Chun‐Yu Lei
Jia‐Feng Liao
+ Normalized ground state solutions for the Schrödinger systems with critical exponential growth in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> 2024 Jing Chen
Zheng Xie
Xinghua Zhang
+ PDF Chat Multiple solutions to multi-critical Schrödinger equations 2022 Ziyi Xu
Jianfu Yang
+ Normalized solutions to the Schrödinger systems with double critical growth and weakly attractive potentials 2023 Lei Long
Xiaojing Feng
+ Multiplicity of normalized solutions for a Schr\"{o}dinger equation with critical growth in $\mathbb{R}^{N}$ 2021 Claudianor O. Alves
Chao Ji
Olı́mpio H. Miyagaki
+ Multiplicity of normalized solutions for a Schrödinger equation with critical growth in $\mathbb{R}^{N}$ 2021 Claudianor O. Alves
Chao Ji
Olı́mpio H. Miyagaki
+ Infinitely Many Solutions of Schrödinger-Poisson Equations with Critical and Sublinear Terms 2019 Xianzhong Yao
Xia Li
Fuchen Zhang
Chunlai Mu
+ Multiple nontrivial solutions for a nonhomogeneous Schrödinger–Poisson system in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>ℝ</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> </mml:math> 2017 Sofiane Khoutir
Haibo Chen
+ PDF Chat Normalized solutions for a Schrödinger equation with critical growth in $${\mathbb {R}}^{N}$$ 2021 Claudianor O. Alves
Chao Ji
Olı́mpio H. Miyagaki
+ PDF Chat Ground states for planar axially Schrödinger–Newton system with an exponential critical growth 2020 Wenbo Wang
Quanqing Li
Yongkun Li