Freeze-Tag in $L_1$ has Wake-up Time Five

Type: Preprint

Publication Date: 2024-02-05

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2402.03258

View Chat PDF

Abstract

The Freeze-Tag Problem, introduced in Arkin et al. (SODA'02) consists of waking up a swarm of $n$ robots, starting from a single active robot. In the basic geometric version, every robot is given coordinates in the plane. As soon as a robot is awakened, it can move towards inactive robots to wake them up. The goal is to minimize the wake-up time of the last robot, the makespan. Despite significant progress on the computational complexity of this problem and on approximation algorithms, the characterization of exact bounds on the makespan remains one of the main open questions. In this paper, we settle this question for the $\ell_1$-norm, showing that a makespan of at most $5r$ can always be achieved, where $r$ is the maximum distance between the initial active robot and any sleeping robot. Moreover, a schedule achieving a makespan of at most $5r$ can be computed in optimal time $O(n)$. Both bounds, the time and the makespan are optimal. This implies a new upper bound of $5\sqrt{2}r \approx 7.07r$ on the makespan in the $\ell_2$-norm, improving the best known bound so far $(5+2\sqrt{2}+\sqrt{5})r \approx 10.06r$.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Geometric Freeze-Tag Problem 2024 Sharareh Alipour
Kajal Baghestani
Mehran Mirzaei
S. Sahraei
+ Freeze-Tag is NP-Hard in 3D with $L_1$ distance 2023 Lucas de Oliveira Silva
+ Freeze-Tag is NP-hard in 3D with L1 distance 2023 Lehilton L. C. Pedrosa
Lucas de Oliveira Silva
+ PDF Chat Approximation Algorithms for the Freeze Tag Problem inside Polygons 2024 Fatemeh Rajabi-Alni
Alireza Bagheri
Behrouz Minaei-Bidgoli‬
+ PDF Chat The Freeze-Tag Problem: How to Wake Up a Swarm of Robots 2006 Esther M. Arkin
Michael A. Bender
Sándor P. Fekete
Joseph S. B. Mitchell
Martin Skutella
+ The freeze-tag problem: how to wake up a swarm of robots 2002 Esther M. Arkin
Michael A. Bender
Sándor P. Fekete
Joseph S. B. Mitchell
Martin Skutella
+ The Freeze-Tag Problem: How to Wake Up a Swarm of Robots 2004 Esther M. Arkin
Michael A. Bender
Sándor P. Fekete
Joseph S. B. Mitchell
Martin Skutella
+ An Optimal Algorithm for Online Freeze-tag 2019 Josh Brunner
Julian Wellman
+ An Optimal Algorithm for Online Freeze-tag 2019 Josh Brunner
Julian Wellman
+ PDF Chat Shadoks Approach to Low-Makespan Coordinated Motion Planning 2022 LoĂŻc Crombez
Guilherme D. da Fonseca
Yan GĂ©rard
Aldo Gonzalez-Lorenzo
Pascal Lafourcade
Luc Libralesso
+ Asymptotically Optimal Gathering on a Grid 2016 Andreas Cord-Landwehr
Matthias Fischer
Daniel Jung
Friedhelm Meyer auf der Heide
+ Asymptotically Optimal Gathering on a Grid 2016 Andreas Cord-Landwehr
Matthias Fischer
D. Jung
Friedhelm Meyer auf der Heide
+ A Survey on Open Problems for Mobile Robots 2011 Alberto Bandettini
Fabio Luporini
Giovanni Viglietta
+ PDF Chat Heterogeneous Multi-Robot Graph Coverage with Proximity and Movement Constraints 2024 Dolev Mutzari
Yonatan Aumann
Sarit Kraus
+ Building a Nest by an Automaton 2019 Jurek Czyzowicz
Dariusz Dereniowski
Andrzej Pelc
+ Mobile Recharger Path Planning and Recharge Scheduling in a Multi-Robot Environment 2021 Tanmoy Kundu
Indranil Saha
+ PDF Chat Mobile Recharger Path Planning and Recharge Scheduling in a Multi-Robot Environment 2021 Tanmoy Kundu
Indranil Saha
+ Constant Factor Time Optimal Multi-Robot Routing on High-Dimensional Grids in Mostly Sub-Quadratic Time 2018 Jingjin Yu
+ Space and Move-optimal Arbitrary Pattern Formation on a Rectangular Grid by Robot Swarms 2022 Avisek Sharma
Satakshi Ghosh
Pritam Goswami
Buddhadeb Sau
+ PDF Chat Servicing Timed Requests on a Line 2021 A. Gkikas
T. Radzik

Cited by (0)

Action Title Year Authors

Citing (0)

Action Title Year Authors