Weighted CLR type bounds in two dimensions

Type: Article

Publication Date: 2024-01-25

Citations: 0

DOI: https://doi.org/10.1090/tran/9124

Abstract

We derive weighted versions of the Cwikel–Lieb–Rozenblum inequality for the Schrödinger operator in two dimensions with a nontrivial Aharonov–Bohm magnetic field. Our bounds capture the optimal dependence on the flux and we identify a class of long-range potentials that saturate our bounds in the strong coupling limit. We also extend our analysis to the two-dimensional Schrödinger operator acting on antisymmetric functions and obtain similar results.

Locations

  • arXiv (Cornell University) - View - PDF
  • Transactions of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ Weighted CLR type bounds in two dimensions 2023 Rupert L. Frank
Ари Лаптев
Larry Read
+ PDF Chat Calogero Type Bounds in Two Dimensions 2022 Ари Лаптев
Larry Read
Lukas Schimmer
+ Semiclassical resolvent bounds in dimension two 2016 Jacob N. Shapiro
+ Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov–Bohm magnetic field 2014 Gabriele Grillo
Hynek Kovařík
+ Semiclassical resolvent bounds in dimension two 2016 Jacob Shapiro
+ PDF Chat Semiclassical resolvent bounds in dimension two 2018 Jacob Shapiro
+ PDF Chat Semiclassical estimates for the magnetic Schr\"odinger operator on the line 2024 Andrés Larraín-Hubach
Jacob N. Shapiro
+ Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov-Bohm magnetic field 2012 Gabriele Grillo
Hynek Kovařík
+ Weighted dispersive estimates for two-dimensional Schr\"odinger operators with Aharonov-Bohm magnetic field 2012 Gabriele Grillo
Hynek Kovařík
+ Cwikel-Lieb-Rozenblum type inequalities for Hardy-Schrödinger operator 2023 Giao Ky Duong
Rupert L. Frank
Thi Minh Thao Le
Phan Thành Nam
Phuoc‐Tai Nguyen
+ Cwikel–Lieb–Rozenblum type inequalities for Hardy–Schrödinger operator 2024 Giao Ky Duong
Rupert L. Frank
Thi Minh Thao Le
Phan Thành Nam
Phuoc‐Tai Nguyen
+ PDF Chat Lieb-Thirring inequalities for the shifted Coulomb Hamiltonian 2024 Thiago Carvalho Corso
Timo Weidl
Z. Zeng
+ Estimates for the number of eigenvalues of two dimensional Schrödinger operators lying below the essential spectrum 2016 Martin Karuhanga
+ PDF Chat Spectral Inequalities for Jacobi Operators and Related Sharp Lieb–Thirring Inequalities on the Continuum 2014 Lukas Schimmer
+ The Lieb–Thirring inequality revisited 2021 Rupert L. Frank
Dirk Hundertmark
Michal Jex
Phan Thành Nam
+ Estimates for the number of eigenvalues of two dimensional Schroedinger operators lying below the essential spectrum 2016 Martin Karuhanga
+ More on Sharp Lieb–Thirring Inequalities 2022 Rupert L. Frank
Ари Лаптев
Timo Weidl
+ More on the Lieb–Thirring Constants 2022 Rupert L. Frank
Ари Лаптев
Timo Weidl
+ The Lieb-Thirring inequality revisited 2018 Rupert L. Frank
Dirk Hundertmark
Michal Jex
Phan Thành Nam
+ On Spectral Inequalities in Quantum Mechanics and Conformal Field Theory 2015 Oscar Mickelin

Works That Cite This (0)

Action Title Year Authors