Optimising network interactions through device agnostic models

Type: Preprint

Publication Date: 2024-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2401.07387

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Deep physical neural networks enabled by a backpropagation algorithm for arbitrary physical systems 2021 Logan G. Wright
Tatsuhiro Onodera
Martin M. Stein
Tianyu Wang
Darren T. Schachter
Zoey Hu
Peter L. McMahon
+ PDF Chat Deep physical neural networks trained with backpropagation 2022 Logan G. Wright
Tatsuhiro Onodera
Martin M. Stein
Tianyu Wang
Darren T. Schachter
Zoey Hu
Peter L. McMahon
+ A deep learning theory for neural networks grounded in physics 2021 Benjamin Scellier
+ Physics-informed Neural Networks for Encoding Dynamics in Real Physical Systems 2024 Hamza Alsharif
+ A Survey on Solving and Discovering Differential Equations Using Deep Neural Networks 2023 Hyeonjung
Jung
Jayant Gupta
Bharat Jayaprakash
Matthew Eagon
Harish Panneer Selvam
Carl Molnar
William F. Northrop
Shashi Shekhar
+ Neural Ordinary Differential Equations 2018 Ricky T. Q. Chen
Yulia Rubanova
Jesse Bettencourt
David Duvenaud
+ Neural ordinary differential equations 2018 Ricky T. Q. Chen
Yulia Rubanova
Jesse Bettencourt
David Duvenaud
+ Neural Ordinary Differential Equations 2018 Ricky T. Q. Chen
Yulia Rubanova
Jesse Bettencourt
David Duvenaud
+ PDF Chat Continuous-Time Digital Twin with Analogue Memristive Neural Ordinary Differential Equation Solver 2024 Hegan Chen
Jichang Yang
Jia Chen
Songqi Wang
Shaocong Wang
Dingchen Wang
Xinyu Tian
Yifei Yu
Xi Chen
Yinan Lin
+ Neural Stochastic Partial Differential Equations. 2021 Cristopher Salvi
Maud Lemercier
+ Parameterized Neural Ordinary Differential Equations: Applications to Computational Physics Problems 2020 Kookjin Lee
Eric Parish
+ NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations 2021 Kirill Zubov
Zoe McCarthy
Yingbo Ma
Francesco Calisto
Valerio Pagliarino
Simone Azeglio
Luca Bottero
Emmanuel Luján
Valentin Sulzer
Ashutosh Bharambe
+ NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations 2021 Kirill Zubov
Zoe McCarthy
Yingbo Ma
Francesco Calisto
Valerio Pagliarino
Simone Azeglio
Luca Bottero
Emmanuel Luján
Valentin Sulzer
Ashutosh Bharambe
+ Dissecting Neural ODEs 2020 Stefano Massaroli
Michael Poli
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
+ PDF Chat A Hybrid Simulation of DNN-based Gray Box Models 2024 Aayushya Agarwal
Yihan Ruan
Larry Pileggi
+ PDF Chat Parameterized neural ordinary differential equations: applications to computational physics problems 2021 Kookjin Lee
Eric Parish
+ Differential Equations for Continuous-Time Deep Learning 2024 Lars Ruthotto
+ Physics-enhanced deep surrogates for partial differential equations 2021 Raphaël Pestourie
Youssef Mroueh
Christopher Rackauckas
Payel Das
Steven G. Johnson
+ PDF Chat Reproduction of AdEx dynamics on neuromorphic hardware through data embedding and simulation-based inference 2024 Jakob Huhle
J. Kaiser
Eric Müller
Johannes Schemmel
+ Physics-informed State-space Neural Networks for Transport Phenomena 2023 Akshay J. Dave
Richard Vilim

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors