Type: Article
Publication Date: 2024-01-08
Citations: 4
DOI: https://doi.org/10.1103/physrevd.109.022002
The (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mn>17</a:mn><a:mtext> </a:mtext><a:mtext> </a:mtext><a:msup><a:mrow><a:mi>km</a:mi></a:mrow><a:mn>2</a:mn></a:msup></a:math> with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 30–80 MHz band. Here, we report the AERA measurements of the (<c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:msub><c:mi>X</c:mi><c:mi>max</c:mi></c:msub></c:math>), a probe for mass composition, at cosmic-ray energies between <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:msup><e:mn>10</e:mn><e:mn>17.5</e:mn></e:msup></e:math> and <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" display="inline"><g:msup><g:mn>10</g:mn><g:mn>18.8</g:mn></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>eV</g:mi></g:math>, which show agreement with earlier measurements with the fluorescence technique at the Pierre Auger Observatory. We show advancements in the method for radio <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:msub><i:mi>X</i:mi><i:mi>max</i:mi></i:msub></i:math> reconstruction by comparison to dedicated sets of / air-shower simulations, including steps of reconstruction-bias identification and correction, which is of particular importance for irregular or sparse radio arrays. Using the largest set of radio air-shower measurements to date, we show the radio <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:msub><k:mi>X</k:mi><k:mi>max</k:mi></k:msub></k:math> resolution as a function of energy, reaching a resolution better than <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mrow><m:mn>15</m:mn><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi mathvariant="normal">g</m:mi><m:mtext> </m:mtext><m:msup><m:mrow><m:mi>cm</m:mi></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>2</m:mn></m:mrow></m:msup></m:mrow></m:math> at the highest energies, demonstrating that radio <p:math xmlns:p="http://www.w3.org/1998/Math/MathML" display="inline"><p:msub><p:mi>X</p:mi><p:mi>max</p:mi></p:msub></p:math> measurements are competitive with the established high-precision fluorescence technique. In addition, we developed a procedure for performing an extensive data-driven study of systematic uncertainties, including the effects of acceptance bias, reconstruction bias, and the investigation of possible residual biases. These results have been cross-checked with air showers measured independently with both the radio and fluorescence techniques, a setup unique to the Pierre Auger Observatory. Published by the American Physical Society 2024