Thrifty Shadow Estimation: Reusing Quantum Circuits and Bounding Tails

Type: Article

Publication Date: 2023-12-15

Citations: 9

DOI: https://doi.org/10.1103/physrevlett.131.240602

Abstract

Shadow estimation is a recent protocol that allows estimating exponentially many expectation values of a quantum state from ``classical shadows,'' obtained by applying random quantum circuits and computational basis measurements. In this Letter we study the statistical efficiency of this approach in light of near-term quantum computing. We propose a more practical variant of the protocol, thrifty shadow estimation, in which quantum circuits are reused many times instead of having to be freshly generated for each measurement. We show that reuse is maximally effective when sampling Haar random unitaries, and maximally ineffective when sampling from the Clifford group, i.e., one should not reuse circuits when performing shadow estimation with the Clifford group. We provide an efficiently simulable family of quantum circuits that interpolates between these extremes, which we believe should be used instead of the Clifford group. Finally, we consider tail bounds for shadow estimation and discuss when median-of-means estimation can be replaced with standard mean estimation.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ Thrifty shadow estimation: re-using quantum circuits and bounding tails 2022 Jonas Helsen
Michael Walter
+ Closed-form analytic expressions for shadow estimation with brickwork circuits 2022 Mirko Arienzo
Markus R. Heinrich
Ingo Roth
Martin Kliesch
+ PDF Chat Nonstabilizerness Enhances Thrifty Shadow Estimation 2024 Datong Chen
Huangjun Zhu
+ Stability of classical shadows under gate-dependent noise 2023 Raphael Brieger
Markus R. Heinrich
Ingo Roth
Martin Kliesch
+ Matchgate Shadows for Fermionic Quantum Simulation 2022 Kianna Wan
William J. Huggins
Joonho Lee
Ryan Babbush
+ PDF Chat Unified Framework for Matchgate Classical Shadows 2024 Valentin Heyraud
Héloise Chomet
Jules Tilly
+ PDF Chat Noise-mitigated randomized measurements and self-calibrating shadow estimation 2024 Emilio Onorati
Jonas Kitzinger
Jonas Helsen
Marios Ioannou
Albert H. Werner
Ingo Roth
Jens Eisert
+ PDF Chat Classical Shadows With Noise 2022 Dax Enshan Koh
Sabee Grewal
+ PDF Chat Shadow simulation of quantum processes 2024 Xuanqiang Zhao
Xin Wang
Giulio Chiribella
+ PDF Chat Dimension Independent and Computationally Efficient Shadow Tomography 2024 Pranay Sinha
+ PDF Chat Robust Shadow Estimation 2021 Senrui Chen
Wenjun Yu
Pei Zeng
Steven T. Flammia
+ PDF Chat Shallow Shadows: Expectation Estimation Using Low-Depth Random Clifford Circuits 2024 Christian Bertoni
Jonas Haferkamp
Marcel Hinsche
Marios Ioannou
Jens Eisert
Hakop Pashayan
+ PDF Chat Bounding the Sample Fluctuation for Pure States Certification with Local Random Measurement 2024 Langxuan Chen
Pengfei Zhang
+ Classical shadows with Pauli-invariant unitary ensembles 2022 Kaifeng Bu
Dax Enshan Koh
Roy J. Garcia
Arthur Jaffe
+ Quantum Error Mitigated Classical Shadows 2023 Hamza Jnane
Jonathan Steinberg
Zhenyu Cai
H. Chau Nguyen
Bálint Koczor
+ PDF Chat Experimental Quantum State Measurement with Classical Shadows 2021 Ting Zhang
Jinzhao Sun
Xiao‐Xu Fang
Xiao‐Ming Zhang
Xiao Yuan
He Lu
+ Shadow tomography with noisy readouts 2023 H. Chau Nguyen
+ Fermionic tomography and learning 2022 Bryan O’Gorman
+ Quantum Divide and Conquer for Classical Shadows 2022 Daniel T. Chen
Zain H. Saleem
Michael A. Perlin
+ PDF Chat Improved classical shadows from local symmetries in the Schur basis 2024 Daniel Grier
Sihan Liu
Gaurav Mahajan