Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems

Type: Preprint

Publication Date: 2023-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2312.06256

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems 2023 Marco Lepri
Davide Bacciu
Cosimo Della Santina
+ Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics 2020 Manuel A. Roehrl
Thomas A. Runkler
Veronika Brandtstetter
Michel Tokic
Stefan Obermayer
+ Symplectic Autoencoders for Model Reduction of Hamiltonian Systems 2023 Benedikt Brantner
M. Kraus
+ PDF Chat Data-Driven Reduced-Order Models for Port-Hamiltonian Systems with Operator Inference 2025 Yuwei Geng
Lili Ju
Boris Kramer
Zhu Wang
+ Towards Learning Controllable Representations of Physical Systems. 2020 Kevin Haninger
Raul Vicente-Garcia
Jörg KrĂŒger
+ PDF Chat Domain-decoupled Physics-informed Neural Networks with Closed-form Gradients for Fast Model Learning of Dynamical Systems 2024 Henrik Krauss
Tim-Lukas Habich
Max Bartholdt
Thomas Seel
Moritz Schappler
+ Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical Systems using Constrained Autoencoders 2023 Samuel E. Otto
Gregory R. Macchio
Clarence W. Rowley
+ Towards Learning Controllable Representations of Physical Systems 2020 Kevin Haninger
RaĂșl GarcĂ­a
Joerg Krueger
+ PDF Chat On the reduction of Linear Parameter-Varying State-Space models 2024 E. Javier Olucha
Bogoljub Terzin
Amritam Das
Roland TĂłth
+ Emulating the dynamics of complex systems using autoregressive models on manifolds (mNARX) 2023 Styfen SchÀr
Stefano Marelli
Bruno Sudret
+ Emulating the dynamics of complex systems using autoregressive models on manifolds (mNARX) 2023 Styfen SchÀr
Stefano Marelli
Bruno Sudret
+ Forced Variational Integrator Networks for Prediction and Control of Mechanical Systems 2021 Aaron Havens
Girish Chowdhary
+ PDF Chat Data-driven Model Reduction for Soft Robots via Lagrangian Operator Inference 2024 Harsh Sharma
Iman Adibnazari
Jacobo Cervera-Torralba
Michael T. Tolley
Boris KrÀmer
+ PDF Chat Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning 2020 Han Gao
Jianxun Wang
Matthew J. Zahr
+ PDF Chat Sparse identification of nonlinear dynamics for model predictive control in the low-data limit 2018 Eurika Kaiser
J. Nathan Kutz
Steven L. Brunton
+ Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems. 2018 Francisco Javier GonzĂĄlez
Maciej Balajewicz
+ PDF Chat Model order reduction of deep structured state-space models: A system-theoretic approach 2024 Marco Forgione
Manas Mejari
Dario Piga
+ Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks 2022 Cyrus Neary
Ufuk Topcu
+ PDF Chat Data-Driven Reduced Order Models Using Invariant Foliations, Manifolds and Autoencoders 2023 RĂłbert Szalai
+ Reduced order modeling of parametrized systems through autoencoders and SINDy approach: continuation of periodic solutions 2023 Paolo Conti
Giorgio Gobat
Stefania Fresca
Andrea Manzoni
Attilio Frangi

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors