QPLEX: Realizing the Integration of Quantum Computing into Combinatorial Optimization Software

Type: Article

Publication Date: 2023-09-17

Citations: 0

DOI: https://doi.org/10.1109/qce57702.2023.00118

Abstract

Quantum computing has the potential to surpass the capabilities of current classical computers when solving complex problems. Combinatorial optimization has emerged as one of the key target areas for quantum computers as problems found in this field play a critical role in many different industrial application sectors (e.g., enhancing manufacturing operations or improving decision processes). Currently, there are different types of high-performance optimization software (e.g., ILOG CPLEX and Gurobi) that support engineers and scientists in solving optimization problems using classical computers. In order to utilize quantum resources, users require domain-specific knowledge of quantum algorithms, SDKs and libraries, which can be a limiting factor for any practitioner who wants to integrate this technology into their workflows. Our goal is to add software infrastructure to a classical optimization package so that application developers can interface with quantum platforms readily when setting up their workflows. This paper presents a tool for the seamless utilization of quantum resources through a classical interface. Our approach consists of a Python library extension that provides a backend to facilitate access to multiple quantum providers. Our pipeline enables optimization software developers to experiment with quantum resources selectively and assess performance improvements of hybrid quantum-classical optimization solutions.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) - View

Similar Works

Action Title Year Authors
+ QPLEX: Realizing the Integration of Quantum Computing into Combinatorial Optimization Software 2023 Juan Pablo Giraldo
José Ossorio
Norha M. Villegas
Gabriel Tamura
Ulrike Stege
+ PDF Chat Towards an Automatic Framework for Solving Optimization Problems with Quantum Computers 2024 Deborah Volpe
Nils Quetschlich
Mariagrazia Graziano
Giovanna Turvani
Robert Wille
+ PDF Chat Hybrid Meta-Solving for Practical Quantum Computing 2024 Domenik Eichhorn
Maximilian Schweikart
Nick Poser
Frederik Fiand
Benedikt Poggel
J. Lorenz
+ PDF Chat Evaluation of Quantum and Hybrid Solvers for Combinatorial Optimization 2024 Amedeo Bertuzzi
Davide Ferrari
Antonio Manzalini
Michele Amoretti
+ PDF Chat QOPTLib: A Quantum Computing Oriented Benchmark for Combinatorial Optimization Problems 2023 Eneko Osaba
Esther Villar-RodrĂ­guez
+ PDF Chat QHyper: an integration library for hybrid quantum-classical optimization 2024 Tomasz LamĆŒa
Justyna Zawalska
Kacper Jurek
Mariusz Sterzel
Katarzyna Rycerz
+ QPack: Quantum Approximate Optimization Algorithms as universal benchmark for quantum computers. 2021 Koen Mesman
Zaid Al-Ars
Matthias Möller
+ PDF Chat Quantum Computing for Discrete Optimization: A Highlight of Three Technologies 2024 Alexey A. Bochkarev
Raoul Heese
Sven JĂ€ger
Philine Schiewe
Anita Schöbel
+ PDF Chat Real World Application of Quantum-Classical Optimization for Production Scheduling 2024 Abhishek Awasthi
Nico Kraus
Florian Krellner
D. Zambrano
+ PDF Chat Quantum annealing versus classical solvers: Applications, challenges and limitations for optimisation problems 2024 Finley Alexander Quinton
Per Arne Sevle Myhr
Mostafa Barani
Pedro Crespo del Granado
Hongyu Zhang
+ PDF Chat Evidence that PUBO outperforms QUBO when solving continuous optimization problems with the QAOA 2023 Jonas Stein
Farbod Chamanian
Maximilian Zorn
Jonas NĂŒĂŸlein
Sebastian Zielinski
Michael Kölle
Claudia Linnhoff–Popien
+ Evidence that PUBO outperforms QUBO when solving continuous optimization problems with the QAOA 2023 Jonas Stein
Farbod Chamanian
Maximilian Zorn
Jonas NĂŒĂŸlein
Sebastian Zielinski
Michael Kölle
Claudia Linnhoff‐Popien
+ PDF Chat Creating Automated Quantum-Assisted Solutions for Optimization Problems 2024 Benedikt Poggel
Xiomara Runge
Adelina BĂ€rligea
J. Lorenz
+ Hybrid Quantum Solvers in Production: how to succeed in the NISQ era? 2024 Eneko Osaba
Esther Villar-RodrĂ­guez
Aitor Gomez-Tejedor
Izaskun Oregi
+ Quantum Computing Techniques for Multi-Knapsack Problems 2023 Abhishek Awasthi
Francesco BĂ€r
Joseph Doetsch
Hans Ehm
Marvin Erdmann
Maximilian Hess
Johannes Klepsch
Peter A. Limacher
André Luckow
Christoph Niedermeier
+ PDF Chat Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms 2024 Ishan Patwardhan
Akhil Akkapelli
+ PDF Chat Towards Robust Benchmarking of Quantum Optimization Algorithms 2024 D. Bucher
Nico Kraus
Jonas Blenninger
Michael Lachner
Jonas Stein
Claudia Linnhoff‐Popien
+ Quafu-Qcover: Explore Combinatorial Optimization Problems on Cloud-based Quantum Computers 2023 BAQIS Quafu Group
+ PDF Chat NP-hard but no longer hard to solve? Using quantum computing to tackle optimization problems 2023 Rhonda Au-Yeung
Nicholas Chancellor
Pascal Halffmann
+ NP-hard but no longer hard to solve? Using quantum computing to tackle optimization problems 2022 Rhonda Au-Yeung
Nicholas Chancellor
Pascal Halffmann

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (12)

Action Title Year Authors
+ A Quantum Approximate Optimization Algorithm 2014 Edward Farhi
Jeffrey Goldstone
Sam Gutmann
+ PDF Chat A case study in programming a quantum annealer for hard operational planning problems 2014 Eleanor Rieffel
Davide Venturelli
Bryan O’Gorman
BĂči Quang Minh
Elicia M. Prystay
Vadim Smelyanskiy
+ PDF Chat Multivariable optimization: Quantum annealing and computation 2015 Sudip Mukherjee
Bikas K. Chakrabarti
+ PDF Chat Review of Optimization Techniques 2010 Gerhard Venter
+ PDF Chat A variational eigenvalue solver on a photonic quantum processor 2014 Alberto Peruzzo
Jarrod R. McClean
Peter Shadbolt
Man‐Hong Yung
Xiaoqi Zhou
Peter J. Love
Alán Aspuru‐Guzik
Jeremy L. O’Brien
+ Combinatorial Optimization on Gate Model Quantum Computers: A Survey 2017 Ehsan Zahedinejad
Arman Zaribafiyan
+ PDF Chat Quantum Speedups for Exponential-Time Dynamic Programming Algorithms 2019 Andris Ambainis
Kaspars Balodis
Jānis Iraids
Martins Kokainis
Kriƥjānis Prƫsis
Jevgēnijs Vihrovs
+ PDF Chat Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks 2022 Samuel Mugel
Carlos Kuchkovsky
EscolĂĄstico SĂĄnchez-MartĂ­nez
Samuel FernĂĄndez-Lorenzo
Jorge Luis-Hita
Enrique Lizaso
RomĂĄn OrĂșs
+ PDF Chat Warm-starting quantum optimization 2021 Daniel J. Egger
Jakub Mareček
Stefan Woerner
+ PDF Chat Layer VQE: A Variational Approach for Combinatorial Optimization on Noisy Quantum Computers 2022 Xiaoyuan Liu
Anthony Angone
Ruslan Shaydulin
Ilya Safro
Yuri Alexeev
Ɓukasz Cincio