Rings With $u^n-1$ Nilpotent For Each Unit $u$

Type: Preprint

Publication Date: 2023-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2311.15018

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Rings such that, for each unit $u$, $u^n-1$ belongs to the $\Delta(R)$ 2024 Peter Danchev
Arash Javan
Omid Hasanzadeh
Mina Doostalizadeh
A. Moussavi
+ Rings with xn + x or xn − x nilpotent 2021 А. N. Abyzov
Peter Danchev
D. T. Tapkin
+ Rings Whose Invertible Elements Are Weakly Nil-Clean 2024 Peter Danchev
Omid Hasanzadeh
A. Moussavi
+ PDF Chat Rings Whose Invertible Elements Are Weakly Nil-Clean 2024 Peter Danchev
Omid Hasanzadeh
Arash Javan
A. Moussavi
+ On rings with xn − x nilpotent 2021 А. N. Abyzov
D. T. Tapkin
+ PDF Chat Generalizing unit-regular rings and special clean elements 2020 Peter Danchev
+ Unit-regularity of elements in rings 2022 Tsiu-Kwen Lee
+ PDF Chat On some extensions of strongly unit nil-clean rings 2024 Ruhollah Barati
+ n-torsion clean and almost n-torsion clean matrix rings 2019 Andrada Cîmpean
Peter Danchev
+ Rings Whose Clean and Nil-Clean Elements Have Some Clean-Like Properties 2024 Peter Danchev
Arash Javan
A. Moussavi
+ PDF Chat UU rings 2015 Grigore Călugăreanu
+ Одно замечание о периодических кольцах 2021 Peter Danchev
+ PDF Chat On Semi-Nil Clean Rings with Applications 2024 M. H. Bien
Peter Danchev
M. Ramezan-Nassab
+ PDF Chat Rings Whose Non-Invertible Elements Are Nil-Clean 2024 Peter Danchev
Arash Javan
Omid Hasanzadeh
A. Moussavi
+ PDF Chat Rings in Which all Elements are Sums or Differences of Nilpotents and Potents 2021 А. N. Abyzov
Peter Danchev
D. T. Tapkin
+ PDF Chat Rings with $u-1$ Quasinilpotent for Each Unit $u$ 2024 Peter Danchev
Arash Javan
Omid Hasanzadeh
A. Moussavi
+ Disproof of Several Recently Published Results in Ring Theory 2023 S K Pandey
+ Rings Whose Non-Invertible Elements Are Uniquely Strongly Clean 2024 Peter Danchev
Omid Hasanzadeh
A. Moussavi
+ PDF Chat Rings in which every element is either a sum or a difference of a nilpotent and an idempotent 2015 Simion Breaz
Peter Danchev
Yiqiang Zhou
+ PDF Chat Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$ 2018 Yansheng Wu
Gaohua Tang
Guixin Deng
Yiqiang Zhou

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors