Anderson mobility edge as a percolation transition

Type: Article

Publication Date: 2024-06-21

Citations: 0

DOI: https://doi.org/10.1103/physrevb.109.l220202

Abstract

The location of the mobility edge is a long-standing problem in Anderson localization. In this Letter, we show that the effective confining potential introduced in the localization landscape (LL) theory predicts the onset of delocalization in 3D tight-binding models in a large part of the energy-disorder diagram. Near the edge of the spectrum, the eigenstates are confined inside the basins of the LL-based potential. The delocalization transition corresponds to the progressive merging of these basins, resulting in the percolation of this classically allowed region throughout the system. This approach, shown to be valid both in the cases of uniform and binary disorders despite their very different phase diagrams, allows us to reinterpret the Anderson transition in the tight-binding model: the mobility edge appears to be composed of two parts, one being understood as a percolation transition.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ The Anderson mobility edge as a percolation transition 2023 Marcel Filoche
Pierre Pelletier
Dominique Delande
Svitlana Mayboroda
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="script">L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> localization landscape for highly excited states 2020 Loïc Herviou
Jens H. Bardarson
+ PDF Chat Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory 2021 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ PDF Chat Diagrammatic self-consistent theory of anderson localization for the tight-binding model 1990 Johann Kroha
+ Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Coexistence of extended and localized states in one-dimensional systems 2018 André M. C. Souza
Roberto F. S. Andrade
+ Coexistence of extended and localized states in one-dimensional systems 2018 André M. C. Souza
Roberto F. S. Andrade
+ PDF Chat Localization properties of a one-dimensional tight-binding model with nonrandom long-range intersite interactions 2005 F. A. B. F. de Moura
А. В. Малышев
M. L. Lyra
В. А. Малышев
F. Domı́nguez-Adame
+ Absence of Mobility Edge in Short-range Uncorrelated Disordered Model: Coexistence of Localized and Extended States 2023 Adway Kumar Das
Anandamohan Ghosh
Ivan M. Khaymovich
+ PDF Chat Absence of Mobility Edge in Short-Range Uncorrelated Disordered Model: Coexistence of Localized and Extended States 2023 Adway Kumar Das
Anandamohan Ghosh
Ivan M. Khaymovich
+ PDF Chat Mobility edge in long-range interacting many-body localized systems 2023 Rozhin Yousefjani
Abolfazl Bayat
+ Mobility edge in long-range interacting many-body localized systems 2022 Rozhin Yousefjani
Abolfazl Bayat
+ PDF Chat Report on 2008.05442v2 2021 Sophie S. Shamailov
D Brown
Thomas Haase
+ PDF Chat Report on 2008.05442v2 2021 Sophie S. Shamailov
D Brown
Thomas Haase
+ Computing the eigenstate localisation length from Localisation Landscape Theory 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ PDF Chat Characterizing the delocalized–localized Anderson phase transition based on the system’s response to boundary conditions 2023 Mohammad Pouranvari
+ PDF Chat Localization properties of a two-channel 3D Anderson model 2020 André M. C. Souza
G. M. A. Almeida
Eduardo R. Mucciolo
+ PDF Chat Report on 2008.05442v1 2020 Sophie S. Shamailov
D Brown
Thomas Haase
+ PDF Chat Report on 2008.05442v1 2020 Sophie S. Shamailov
D Brown
Thomas Haase

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Higher-order localization landscape theory of Anderson localization 2024 S. E. Skipetrov

Works Cited by This (16)

Action Title Year Authors
+ PDF Chat Critical Parameters from a Generalized Multifractal Analysis at the Anderson Transition 2010 Alberto Rodríguez
Louella Vasquez
Keith Slevin
Rudolf A. Römer
+ PDF Chat Coherent matter wave transport in speckle potentials 2007 R. C. Kuhn
Olivier Sigwarth
Christian Miniatura
Dominique Delande
Cord A. Müller
+ PDF Chat Three-dimensional localization of ultracold atoms in an optical disordered potential 2012 Fred Jendrzejewski
A. Bernard
Kilian Müller
Patrick Cheinet
Vincent Josse
Marie Piraud
Luca Pezzè
Laurent Sanchez-Palencia
A. Aspect
Philippe Bouyer
+ PDF Chat Measurement of the mobility edge for 3D Anderson localization 2015 Giulia Semeghini
M. Landini
P. C. M. Castilho
Sanjukta Roy
G. Spagnolli
A. Trenkwalder
M. Fattori
M. Inguscio
Giovanni Carlo Modugno
+ PDF Chat Effective Confining Potential of Quantum States in Disordered Media 2016 Douglas N. Arnold
Guy David
David Jerison
Svitlana Mayboroda
Marcel Filoche
+ PDF Chat Mobility Edge for Cold Atoms in Laser Speckle Potentials 2014 Dominique Delande
Giuliano Orso
+ PDF Chat Anderson Localization of Ultracold Atoms: Where is the Mobility Edge? 2017 Michael Pasek
Giuliano Orso
Dominique Delande
+ Introduction to Percolation Theory 1987 N. Rivier
+ PDF Chat Localization landscape theory of disorder in semiconductors. I. Theory and modeling 2017 Marcel Filoche
Marco Piccardo
Yuh‐Renn Wu
Chi-Kang Li
Claude Weisbuch
Svitlana Mayboroda
+ PDF Chat Computing Spectra without Solving Eigenvalue Problems 2019 Douglas N. Arnold
Guy David
Marcel Filoche
David Jerison
Svitlana Mayboroda