Instability of Gravitational and Electromagnetic Perturbations of Extremal Reissner–Nordström Spacetime

Type: Article

Publication Date: 2023-11-17

Citations: 2

DOI: https://doi.org/10.1007/s40818-023-00158-5

Abstract

Abstract We study the linear stability problem to gravitational and electromagnetic perturbations of the extremal , $$ |Q|=M, $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>|</mml:mo> <mml:mo>=</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> Reissner–Nordström spacetime, as a solution to the Einstein–Maxwell equations. Our work uses and extends the framework [28, 32] of Giorgi, and contrary to the subextremal case we prove that instability results hold for a set of gauge invariant quantities along the event horizon $$ {\mathcal {H}}^+ $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:math> . In particular, for associated quantities shown to satisfy generalized Regge–Wheeler equations we prove decay, non-decay, and polynomial blow-up estimates asymptotically along $$ {\mathcal {H}}^+ $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:math> , the exact behavior depending on the number of translation invariant derivatives that we take. As a consequence, we show that for generic initial data, solutions to the generalized Teukolsky system of positive and negative spin satisfy both stability and instability results. It is worth mentioning that the negative spin solutions are significantly more unstable, with the extreme curvature component $$ {\underline{\alpha }} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:munder> <mml:mi>α</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:math> not decaying asymptotically along the event horizon $$ {\mathcal {H}}^+, $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>H</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> a result previously unknown in the literature.

Locations

Similar Works

Action Title Year Authors
+ Instability of gravitational and electromagnetic perturbations of extremal Reissner-Nordström spacetime 2022 Marios Antonios Apetroaie
+ PDF Chat Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case 2017 Julián M. Fernández Tío
Gustavo Dotti
+ PDF Chat The Linear Stability of Reissner–Nordström Spacetime: The Full Subextremal Range $$|Q|&lt;M$$ 2020 Elena Giorgi
+ PDF Chat Stability and Instability of Extreme Reissner–Nordström Black Hole Spacetimes for Linear Scalar Perturbations II 2011 Stefanos Aretakis
+ PDF Chat THE BLACK HOLE STABILITY PROBLEM FOR LINEAR SCALAR PERTURBATIONS 2012 Mihalis Dafermos
Igor Rodnianski
+ Coupled gravitational and electromagnetic perturbations of Reissner-Nordström spacetime in a polarized setting 2017 Elena E. Giorgi
+ Coupled gravitational and electromagnetic perturbations of Reissner-Nordstr\"om spacetime in a polarized setting 2017 Elena Giorgi
+ PDF Chat Gravitational instability of the inner static region of a Reissner–Nordström black hole 2010 Gustavo Dotti
Reinaldo J. Gleiser
+ PDF Chat Instability of the Kerr Cauchy Horizon Under Linearised Gravitational Perturbations 2023 Jan Sbierski
+ Extremal Reissner–Nordström Black Holes 2018 Stefanos Aretakis
+ PDF Chat Nonlinear stability of extremal Reissner-Nordstr\"om black holes in spherical symmetry 2024 Yannis Angelopoulos
Christoph Kehle
Ryan Unger
+ Asymptotics for Extremal Reissner–Nordström 2018 Stefanos Aretakis
+ Decay and non-decay for the massless Vlasov equation on subextremal and extremal Reissner–Nordström black holes 2024 Max Weissenbacher
+ PDF Chat The Linear Stability of the Schwarzschild Solution to Gravitational Perturbations in the Generalised Wave Gauge 2019 Thomas William Johnson
+ PDF Chat Stability and Instability of the Sub-extremal Reissner–Nordström Black Hole Interior for the Einstein–Maxwell–Klein–Gordon Equations in Spherical Symmetry 2018 Maxime Van de Moortel
+ PDF Chat BLACK HOLE INSTABILITIES AND LOCAL PENROSE INEQUALITIES 2015 Pau Figueras
Keiju Murata
Harvey S. Reall
+ PDF Chat Electromagnetic-gravitational perturbations of Kerr–Newman spacetime: The Teukolsky and Regge–Wheeler equations 2022 Elena Giorgi
+ Electromagnetic-gravitational perturbations of Kerr-Newman spacetime: the Teukolsky and Regge-Wheeler equations 2020 Elena E. Giorgi
+ PDF Chat The non-linear perturbation of a black hole by gravitational waves. III. Newman–Penrose constants 2024 Jörg Frauendiener
Alex Goodenbour
Chris Stevens
+ PDF Chat Black hole nonmodal linear stability: Even perturbations in the Reissner-Nordström case 2020 Gustavo Dotti
Julián M. Fernández Tío