An optimal approximation problem for free polynomials

Type: Article

Publication Date: 2023-11-15

Citations: 4

DOI: https://doi.org/10.1090/proc/16474

Abstract

Motivated by recent work on optimal approximation by polynomials in the unit disk, we consider the following noncommutative approximation problem: for a polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding="application/x-tex">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> freely noncommuting arguments, find a free polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p Subscript n"> <mml:semantics> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">p_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of degree at most <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, to minimize <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c Subscript n Baseline colon-equal double-vertical-bar p Subscript n Baseline f minus 1 double-vertical-bar squared"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>≔</mml:mo> <mml:mo fence="false" stretchy="false">‖<!-- ‖ --></mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mi>f</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:msup> <mml:mo fence="false" stretchy="false">‖<!-- ‖ --></mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">c_n ≔\|p_nf-1\|^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. (Here the norm is the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script l squared"> <mml:semantics> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\ell ^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm on coefficients.) We show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c Subscript n Baseline right-arrow 0"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">c_n\to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nonsingular in a certain nc domain (the row ball), and prove quantitative bounds. As an application, we obtain a new proof of the characterization of polynomials cyclic for the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding="application/x-tex">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-shift.

Locations

  • Proceedings of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Polynomial approximation on 𝑦=𝑥^{𝛼} 1970 Eli Passow
Louis Raymon
+ PDF Chat An 𝑙₁ extremal problem for polynomials 1971 E. Beller
Donald J. Newman
+ A note on 𝐿^{𝑝}-bounded point evaluations for polynomials 2016 Liming Yang
+ Quasi-convex free polynomials 2014 Sriram Balasubramanian
Scott McCullough
+ Comonotone polynomial approximation 1974 Eli Passow
Louis Raymon
John A. Roulier
+ PDF Chat An extremal problem for polynomials 1994 Alexandre Erëmenko
László Lempert
+ PDF Chat On a problem of Turan about polynomials 1976 Roger Pierre
Q. I. Rahman
+ PDF Chat Polynomial extremal problems in 𝐿^{𝑝} 1971 E. Beller
+ PDF Chat Approximation by polynomials in 𝑧 and another function 1978 Kenneth John Preskenis
+ PDF Chat The set of zeroes of an “almost polynomial” function 1984 Yosef Yomdin
+ PDF Chat Bounded polynomial vector fields 1990 Anna Cima
Jaume Llibre
+ Approximation by 𝐸-Polynomials 1986 Walter Rudin
+ PDF Chat Mean-square approximation by polynomials on the unit disk 1990 Thomas Kriete
Barbara D. MacCluer
+ PDF Chat The image of 𝐻_{∗}(𝐵𝑆𝑂;𝑍₂) in 𝐻_{∗}(𝐵𝑂;𝑍₂) 1989 Stavros Papastavridis
+ Polynomial Approximation 2007
+ Polynomial Approximation 1986 Richard Bellman
R.S. Roth
+ Polynomial approximation 1969 John Wermer
+ PDF Chat Solutions of 𝑓(𝑥)=𝑓(𝑎)+(𝑅𝐿)∫ₐ^{𝑥}(𝑓𝐻+𝑓𝐺) for rings 1970 Burrell W. Helton
+ Approximation by lacunary polynomials 1977 M. Dixon
J. Korevaar
+ PDF Chat Approximation by Polynomials 2007