Type: Article
Publication Date: 2023-11-15
Citations: 4
DOI: https://doi.org/10.1090/proc/16474
Motivated by recent work on optimal approximation by polynomials in the unit disk, we consider the following noncommutative approximation problem: for a polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding="application/x-tex">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> freely noncommuting arguments, find a free polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p Subscript n"> <mml:semantics> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">p_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of degree at most <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, to minimize <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c Subscript n Baseline colon-equal double-vertical-bar p Subscript n Baseline f minus 1 double-vertical-bar squared"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>≔</mml:mo> <mml:mo fence="false" stretchy="false">‖<!-- ‖ --></mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mi>f</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:msup> <mml:mo fence="false" stretchy="false">‖<!-- ‖ --></mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">c_n ≔\|p_nf-1\|^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. (Here the norm is the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script l squared"> <mml:semantics> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\ell ^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm on coefficients.) We show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c Subscript n Baseline right-arrow 0"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>c</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">c_n\to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nonsingular in a certain nc domain (the row ball), and prove quantitative bounds. As an application, we obtain a new proof of the characterization of polynomials cyclic for the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding="application/x-tex">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-shift.