Neural General Circulation Models

Type: Preprint

Publication Date: 2023-01-01

Citations: 13

DOI: https://doi.org/10.48550/arxiv.2311.07222

View

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Neural general circulation models optimized to predict satellite-based precipitation observations 2024 Janni Yuval
Ian Langmore
Dmitrii Kochkov
Stephan Hoyer
+ PDF Chat ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs 2024 Yogesh Kumar Verma
Markus Heinonen
Vikas Garg
+ PDF Chat A Deep Learning Earth System Model for Stable and Efficient Simulation of the Current Climate 2024 Nathaniel Cresswell‐Clay
Bowen Liu
Dale R. Durran
Andy Liu
Zachary I. Espinosa
RaĂșl Moreno
Matthias Karlbauer
+ Deep learning to represent sub-grid processes in climate models 2018 Stephan Rasp
Michael S. Pritchard
Pierre Gentine
+ ClimaX: A foundation model for weather and climate 2023 Tung Thanh Nguyen
J. Brandstetter
Ashish Kapoor
Jayesh K. Gupta
Aditya Grover
+ FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators 2022 Jaideep Pathak
Shashank Subramanian
Peter Harrington
Sanjeev Raja
Ashesh Chattopadhyay
Morteza Mardani
Thorsten Kurth
David Hall
Zongyi Li
Kamyar Azizzadenesheli
+ PDF Chat Deep learning to represent subgrid processes in climate models 2018 Stephan Rasp
Michael S. Pritchard
Pierre Gentine
+ PDF Chat Forecasting the Future with Future Technologies: Advancements in Large Meteorological Models 2024 Hailong Shu
Yue Wang
Weiwei Song
Huichuang Guo
Zhen Song
+ Stable Emulation of an Entire Suite of Model Physics in a State-of-the-Art GCM using a Neural Network 2021 Alexei Belochitski
Vladimir M. Krasnopolsky
+ Improving seasonal forecast using probabilistic deep learning 2020 Baoxiang Pan
Gemma J. Anderson
André Gonçalves
D. D. Lucas
C. Bonfils
Jiwoo Lee
+ Long-term stability and generalization of observationally-constrained stochastic data-driven models for geophysical turbulence 2022 Ashesh Chattopadhyay
Jaideep Pathak
Ebrahim Nabizadeh
W. Bhimji
Pedram Hassanzadeh
+ Are General Circulation Models obsolete? 2022 V. Balaji
Fleur Couvreux
Julie Deshayes
Jacques Gautrais
F. Hourdin
Catherine Rio
+ PDF Chat Improving Seasonal Forecast Using Probabilistic Deep Learning 2022 Baoxiang Pan
Gemma J. Anderson
André Gonçalves
D. D. Lucas
C. Bonfils
Jiwoo Lee
+ GraphCast: Learning skillful medium-range global weather forecasting 2022 RĂ©mi Lam
Álvaro Sánchez‐González
Matthew Willson
Peter Wirnsberger
Meire Fortunato
Alexander Pritzel
Suman Ravuri
Timo Ewalds
Ferran Alet
Zach Eaton-Rosen
+ PDF Chat GraphCast: Learning skillful medium-range global weather forecasting 2024 Álvaro Sánchez‐González
+ PDF Chat Use of Neural Networks for Stable, Accurate and Physically Consistent Parameterization of Subgrid Atmospheric Processes With Good Performance at Reduced Precision 2021 Janni Yuval
Paul A. O’Gorman
Chris Hill
+ Machine Learning Climate Model Dynamics: Offline versus Online Performance 2020 Noah Brenowitz
Brian Henn
Jeremy McGibbon
Spencer K. Clark
Anna Kwa
W. A. Perkins
Oliver Watt‐Meyer
Christopher S. Bretherton
+ A Multi-Scale Deep Learning Framework for Projecting Weather Extremes 2022 Antoine Blanchard
Nishant Parashar
Boyko Dodov
Christian Lessig
Themistoklis P. Sapsis
+ Are general circulation models obsolete? 2022 V. Balaji
Fleur Couvreux
Julie Deshayes
Jacques Gautrais
F. Hourdin
Catherine Rio
+ PDF Chat Graph Convolutional Neural Networks as Surrogate Models for Climate Simulation 2024 Kevin Potter
Carianne Martinez
Reina Pradhan
Samantha Brozak
Steven Sleder
Lauren Wheeler

Citing (0)

Action Title Year Authors