Congruences modulo <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4</mml:mn></mml:math> for the number of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>3</mml:mn></mml:math>-regular partitions

Type: Article

Publication Date: 2023-11-10

Citations: 1

DOI: https://doi.org/10.5802/crmath.512

Abstract

The last decade has seen an abundance of congruences for b ℓ (n), the number of ℓ-regular partitions of n. Notably absent are congruences modulo 4 for b 3 (n). In this paper, we introduce Ramanujan type congruences modulo 4 for b 3 (2n) involving some primes p congruent to 11,13,17,19,23 modulo 24.

Locations

  • Comptes Rendus Mathématique - View - PDF

Similar Works

Action Title Year Authors
+ Congruences modulo <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> for k dots bracelet partitions with <mml:math xmlns:mml="http://www.w3… 2015 Nayandeep Deka Baruah
Zakir Hussain Ahmed
+ New congruences for 4,6-regular partitions modulo primes 2023 Qi-Yang Zheng
+ PDF Chat New combinatorial interpretations of Ramanujan’s partition congruences mod 5,7 and 11 1988 Frank G. Garvan
+ PDF Chat The crank of partitions mod 8,9 and 10 1990 Frank G. Garvan
+ Ramanujan-type congruences modulo 4 for partitions into distinct parts 2022 Mircea Merca
+ PDF Chat Congruences involving<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$F$"><mml:mi>F</mml:mi></mml:math>-partition functions 1994 James A. Sellers
+ PDF Chat A note on odd partition numbers 2024 Michael Griffin
Ken Ono
+ Ramanujan congruences for q(n) 1981 Basil Gordon
K. Hughes
+ PDF Chat Ramanujan-type congruences for overpartitions modulo 16 2015 William Y. C. Chen
Qing-Hu Hou
Lisa H. Sun
Li Zhang
+ Congruences for m-regular Partitions Modulo 4. 2015 William J. Keith
+ Congruences for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>r</mml:mi><mml:mi>s</mml:mi></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2010 Shi-Chao Chen
+ Ramanujan-type Congruences for Overpartitions Modulo 16 2014 William Y. C. Chen
Qing-Hu Hou
Lisa H. Sun
Li Zhang
+ Some new congruences for overcubic partitions with r-tuples 2024 Pujashree Buragohain
Nipen Saikia
+ PDF Chat ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS 2009 Michael D. Hirschhorn
James A. Sellers
+ PDF Chat Some New Congruences for l-Regular Partitions Modulo 13, 17, and 23 2020 Sarma Abinash
T. Kathiravan
K. Srilakshmi
+ New Infinite Families of Congruences Modulo Powers of 2 for 2--Regular Partitions with Designated Summands 2023 James A. Sellers
+ New congruences modulo powers of 2 and 3 for 9-regular partitions 2014 Olivia X. M. Yao
+ Arithmetic properties of $\ell$-regular overpartition pairs 2017 Megadahalli Siddanaika Mahadeva NAIKA
C. Shivashankar
+ PDF Chat Families of Ramanujan-Type Congruences Modulo 4 for the Number of Divisors 2022 Mircea Merca
+ New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions 2013 Olivia X. M. Yao
Ernest X. W. Xia