An upper bound on the mean value of the Erdős–Hooley Delta function

Type: Article

Publication Date: 2023-11-09

Citations: 3

DOI: https://doi.org/10.1112/plms.12572

Abstract

Abstract The Erdős–Hooley Delta function is defined for as . We prove that for all . This improves on earlier work of Hooley, Hall–Tenenbaum, and La Bretèche–Tenenbaum.

Locations

  • Proceedings of the London Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Proceedings of the London Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Proceedings of the London Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF A lower bound on the mean value of the Erdős–Hooley Delta function 2024 Kevin Ford
Dimitris Koukoulopoulos
Terence Tao
+ An upper bound on the mean value of the Erdős-Hooley Delta function 2023 Dimitris Koukoulopoulos
Terence Tao
+ Two upper bounds for the Erdős-Hooley Delta-function 2023 Régis de la Bretèche
Gérald Tenenbaum
+ A lower bound on the mean value of the Erdős-Hooley Delta function 2023 Kevin R. Ford
Dimitris Koukoulopoulos
Terence Tao
+ Note on the mean value of the Erdős--Hooley Delta-function 2023 Régis de la Bretèche
Gérald Tenenbaum
+ Two upper bounds for the Erdős--Hooley Delta-function 2022 Régis de la Bretèche
Gérald Tenenbaum
+ On the friable mean-value of the Erdős–Hooley Delta function 2024 Bruno Martin
Gérald Tenenbaum
J.M. Wetzer
+ The Erdös-Mordell Inequality 2008
+ The Erdös-Mordell Inequality 2008
+ On the friable mean-value of the Erdős-Hooley Delta function 2023 Bruno Martin
Gérald Tenenbaum
Julie Wetzer
+ Improved bounds for the Erdős-Rogers function 2018 W. T. Gowers
Oliver Janzer
+ An Exploration of the Erdös-Mordell Inequality 2010 Jeremy Hamilton
+ A Note on the Erdös-Feller-Pollard Theorem 1976 Mark A. Pinsky
+ A Note on the Erdos-Feller-Pollard Theorem 1976 Mark A. Pinsky
+ A Weighted Erdos-Mordell Inequality 2001 Seannie Dar
Shay Gueron
+ A weighted Erdös-Mordell inequality 2002 Marian Dincă
Mihály Bencze
+ A refinement of Erdös-Mordell's inequality 2002 Mihály Bencze
Marian Dincă
+ Generalization of the Erdos-Gallai Inequality. 2011 Sibel Özkan
+ The Erdős-Fuchs Theorem 2006
+ PDF On a form of the Erdős-Turán inequality 1996 Jeffrey R. Holt