Regularity theory for a new class of fractional parabolic stochastic evolution equations

Type: Article

Publication Date: 2023-10-30

Citations: 1

DOI: https://doi.org/10.1007/s40072-023-00316-7

Abstract

Abstract A new class of fractional-order parabolic stochastic evolution equations of the form $$(\partial _t + A)^\gamma X(t) = {\dot{W}}^Q(t)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>+</mml:mo> <mml:mi>A</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>γ</mml:mi> </mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , $$t\in [0,T]$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , $$\gamma \in (0,\infty )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , is introduced, where $$-A$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> generates a $$C_0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> -semigroup on a separable Hilbert space H and the spatiotemporal driving noise $${\dot{W}}^Q$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>W</mml:mi> <mml:mo>˙</mml:mo> </mml:mover> </mml:mrow> <mml:mi>Q</mml:mi> </mml:msup> </mml:math> is the formal time derivative of an H -valued cylindrical Q -Wiener process. Mild and weak solutions are defined; these concepts are shown to be equivalent and to lead to well-posed problems. Temporal and spatial regularity of the solution process X are investigated, the former being measured by mean-square or pathwise smoothness and the latter by using domains of fractional powers of A . In addition, the covariance of X and its long-time behavior are analyzed. These abstract results are applied to the cases when $$A:= L^\beta $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>β</mml:mi> </mml:msup> </mml:mrow> </mml:math> and $$Q:={\widetilde{L}}^{-\alpha }$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mover> <mml:mi>L</mml:mi> <mml:mo>~</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> are fractional powers of symmetric, strongly elliptic second-order differential operators defined on (i) bounded Euclidean domains or (ii) smooth, compact surfaces. In these cases, the Gaussian solution processes can be seen as generalizations of merely spatial (Whittle–)Matérn fields to space–time.

Locations

  • Stochastic Partial Differential Equations Analysis and Computations - View - PDF

Similar Works

Action Title Year Authors
+ Regularity theory for a new class of fractional parabolic stochastic evolution equations 2022 Kristin Kirchner
Joshua S. Willems
+ Stochastic pseudo-parabolic equations with fractional derivative and fractional Brownian motion 2021 Tran Ngoc Thach
Nguyen Huy Tuan
+ Relationship between stochastic and parabolic equations 2014 Giuseppe Da Prato
+ PDF Chat A support theorem for parabolic stochastic PDEs with nondegenerate Hölder diffusion coefficients 2023 Yi Han
+ A regularity theory for quasi-linear Stochastic PDE<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:mi mathvariant="bold">s</mml:mi></mml:math> in weighted Sobolev spaces 2017 Ildoo Kim
Kyeong-Hun Kim
+ PDF Chat A Sobolev Space Theory for Time-Fractional Stochastic Partial Differential Equations Driven by Lévy Processes 2023 Kyeong-Hun Kim
Daehan Park
+ Parabolic partial differential equations with fractional diffusion 2019 Joel Alba Pérez
+ Non-Linear Evolution Equations Driven by Rough Paths 2012 Thomas Cass
Zhongmin Qian
Jan Tudor
+ PDF Chat Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise 2021 Tran Ngoc Thach
Devendra Kumar
Nguyen Hoang Luc
Nguyen Huy Tuan
+ PDF Chat A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation 2023 Yawen Feng
Mikko Parviainen
Saara Sarsa
+ A Sobolev space theory for parabolic stochastic PDEs driven by Lévy processes on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-domains 2013 Kyeong-Hun Kim
+ Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition 2018 Mahmoud M. El-Borai
Khairia El-Nadi
Hamdy M. Ahmed
H. El-Owaidy
Ahmed S. Ghanem
R. Sakthivel
+ PDF Chat Weak Convergence for a Class of Stochastic Fractional Equations Driven by Fractional Noise 2014 Xichao Sun
Junfeng Liu
+ PDF Chat Fractional Sobolev regularity for solutions to a strongly degenerate parabolic equation 2023 Pasquale Ambrosio
+ Regularity Properties of Solutions of Fractional Evolution Equations 2019 Philippe Clément
Gustaf Gripenberg
Stig–Olof Londen
+ A Sobolev space theory for the time-fractional stochastic partial differential equations driven by Levy processes 2020 Kyeong Hun Kim
Daehan Park
+ PDF Chat On the critical behavior for time-fractional pseudo-parabolic-type equations with combined nonlinearities 2022 Areej Bin Sultan
Mohamed Jleli
Bessem Samet
Calogero Vetro
+ PDF Chat Evolutionary equations driven by fractional Brownian motion 2013 Gertrud Desch
Stig–Olof Londen
+ Existence of solutions for time fractional semilinear parabolic equations in Besov–Morrey spaces 2024 Yusuke Oka
Erbol Zhanpeisov
+ On One Evolution Equation of Parabolic Type with Fractional Differentiation Operator in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>S</mml:mi></mml:math> Spaces 2020 V. Gorodetskiy
R. Kolisnyk
N. M. Shevchuk