Higher uniformity of arithmetic functions in short intervals I. All intervals

Type: Article

Publication Date: 2023-01-01

Citations: 2

DOI: https://doi.org/10.1017/fmp.2023.28

Abstract

Abstract We study higher uniformity properties of the Möbius function $\mu $ , the von Mangoldt function $\Lambda $ , and the divisor functions $d_k$ on short intervals $(X,X+H]$ with $X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$ for a fixed constant $0 \leq \theta < 1$ and any $\varepsilon>0$ . More precisely, letting $\Lambda ^\sharp $ and $d_k^\sharp $ be suitable approximants of $\Lambda $ and $d_k$ and $\mu ^\sharp = 0$ , we show for instance that, for any nilsequence $F(g(n)\Gamma )$ , we have $$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when $\theta = 5/8$ and $f \in \{\Lambda , \mu , d_k\}$ or $\theta = 1/3$ and $f = d_2$ . As a consequence, we show that the short interval Gowers norms $\|f-f^\sharp \|_{U^s(X,X+H]}$ are also asymptotically small for any fixed s for these choices of $f,\theta $ . As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in $L^2$ . Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type $II$ sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type $I_2$ sums.

Locations

  • Forum of Mathematics Pi - View - PDF
  • Forum of Mathematics Pi - View - PDF
  • Forum of Mathematics Pi - View - PDF

Similar Works

Action Title Year Authors
+ Higher uniformity of arithmetic functions in short intervals I. All intervals 2022 Kaisa Matomäki
Xuancheng Shao
Terence Tao
Joni Teräväinen
+ PDF Chat Higher uniformity of arithmetic functions in short intervals II. Almost all intervals 2024 Kaisa Matomäki
Maksym Radziwiłł
Xuancheng Shao
Terence Tao
Joni Teräväinen
+ Ergodic averages for sparse sequences along primes 2023 Andreas Koutsogiannis
Konstantinos Tsinas
+ Multiplicative functions in short intervals II 2020 Kaisa Matomäki
Maksym Radziwiłł
+ Multiplicative functions in short intervals II 2020 Kaisa Matomäki
Maksym Radziwiłł
+ Multiplicative functions in short intervals 2015 Kaisa Matomäki
Maksym Radziwiłł
+ Möbius Disjointness for Nilsequences Along Short Intervals 2019 Xiaoguang He
Zhiren Wang
+ Multiplicative functions in short intervals 2015 Kaisa Matomäki
Maksym Radziwiłł
+ Hardy-Littlewood Numbers in Short Intervals 1995 Alberto Perelli
J. Pintz
+ PDF Chat ON WEYL SUMS OVER PRIMES IN SHORT INTERVALS 2013 Angel Kumchev
+ Short intervals with a given number of primes 2015 Tristan Freiberg
+ Short intervals with a given number of primes 2015 Tristan Freiberg
+ PDF Correction to: Fourier uniformity of bounded multiplicative functions in short intervals on average 2019 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
+ PDF Multiplicative functions in short intervals 2016 Kaisa Matomäki
Maksym Radziwiłł
+ PDF Chat The error in the prime number theorem in short intervals 2024 Ethan Simpson Lee
+ PDF Short sums of multiplicative functions 2012 Vishaal Kapoor
+ PDF Chat A short-interval Hildebrand-Tenenbaum theorem 2024 Jacques Benatar
+ Short intervals with a given number of primes 2016 Tristan Freiberg
+ Goldbach numbers in short intervals 2021 Lasse Grimmelt
+ Effective Asymptotic Formulae for Multilinear Averages of Multiplicative Functions 2017 Oleksiy Klurman
Alexander P. Mangerel