The Random Weierstrass Zeta Function II. Fluctuations of the Electric Flux Through Rectifiable Curves

Type: Article

Publication Date: 2023-10-19

Citations: 1

DOI: https://doi.org/10.1007/s10955-023-03170-y

Abstract

Abstract Consider a random planar point process whose law is invariant under planar isometries. We think of the process as a random distribution of point charges and consider the electric field generated by the charge distribution. In Part I of this work, we found a condition on the spectral side which characterizes when the field itself is invariant with a well-defined second-order structure. Here, we fix a process with an invariant field, and study the fluctuations of the flux through large arcs and curves in the plane. Under suitable conditions on the process and on the curve, denoted $$\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Γ</mml:mi></mml:math> , we show that the asymptotic variance of the flux through $$R\,\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi><mml:mspace/><mml:mi>Γ</mml:mi></mml:mrow></mml:math> grows like R times the signed length of $$\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Γ</mml:mi></mml:math> . As a corollary, we find that the charge fluctuations in a dilated Jordan domain is asymptotic with the perimeter, provided only that the boundary is rectifiable. The proof is based on the asymptotic analysis of a closely related quantity (the complex electric action of the field along a curve). A decisive role in the analysis is played by a signed version of the classical Ahlfors regularity condition.

Locations

  • Journal of Statistical Physics - View - PDF

Similar Works

Action Title Year Authors
+ The random Weierstrass zeta function II. Fluctuations of the electric flux through rectifiable curves 2022 Mikhail Sodin
Aron Wennman
Oren Yakir
+ PDF Chat Fractal behavior for nodal lines of smooth planar Gaussian fields at criticality 2024 David Vernotte
+ PDF Chat Asymptotic topology of excursion and nodal sets of Gaussian random fields 2022 Damien Gayet
+ PDF Chat The Random Weierstrass Zeta Function I: Existence, Uniqueness, Fluctuations 2023 Mikhail Sodin
Aron Wennman
Oren Yakir
+ Planar Lebesgue Measure 1950 Nat G. Martin
+ PDF Chat Fluctuations of the Increment of the Argument for the Gaussian Entire Function 2017 Jeremiah Buckley
Mikhail Sodin
+ PDF Chat Regularity of Schramm-Loewner evolutions, annular crossings, and rough path theory 2012 Brent M. Werness
+ The random Weierstrass zeta function I. Existence, uniqueness, fluctuations 2022 Mikhail Sodin
Aron Wennman
Oren Yakir
+ Diffusion in planar Liouville quantum gravity 2013 Nathanaël Berestycki
+ Diffusion in planar Liouville quantum gravity 2013 Nathanaël Berestycki
+ PDF Chat Conformal restriction: The chordal case 2003 Gregory F. Lawler
Oded Schramm
Wendelin Werner
+ Random Differential Topology 2021 Michele Stecconi
+ Random Differential Topology 2021 Michele Stecconi
+ Conformal restriction and Brownian motion 2015 Hao Wu
+ Random Conformal Weldings at criticality 2012 Nicolae Tecu
+ Anomalous diffusion of random walk on random planar maps 2018 Ewain Gwynne
Tom Hutchcroft
+ Anomalous diffusion of random walk on random planar maps 2018 Ewain Gwynne
Tom Hutchcroft
+ Planar Brownian Motion and Complex Analysis 2020 Greg Markowsky
+ Random Iteration of Cylinder Maps and diffusive behavior away from resonances 2017 O. Castejón
Marcel Guàrdia
V. A. Kaloshin
+ The master field on the plane 2011 Thierry Lévy