Univalent Double Categories

Type: Preprint
Publication Date: 2023-01-01
Citations: 0
DOI: https://doi.org/10.48550/arxiv.2310.09220

Abstract

Category theory is a branch of mathematics that provides a formal framework for understanding the relationship between mathematical structures. To this end, a category not only incorporates the data of the desired objects, but also "morphisms", which capture how different objects interact with each other. Category theory has found many applications in mathematics and in computer science, for example in functional programming. Double categories are a natural generalization of categories which incorporate the data of two separate classes of morphisms, allowing a more nuanced representation of relationships and interactions between objects. Similar to category theory, double categories have been successfully applied to various situations in mathematics and computer science, in which objects naturally exhibit two types of morphisms. Examples include categories themselves, but also lenses, petri nets, and spans. While categories have already been formalized in a variety of proof assistants, double categories have received far less attention. In this paper we remedy this situation by presenting a formalization of double categories via the proof assistant Coq, relying on the Coq UniMath library. As part of this work we present two equivalent formalizations of the definition of a double category, an unfolded explicit definition and a second definition which exhibits excellent formal properties via 2-sided displayed categories. As an application of the formal approach we establish a notion of univalent double category along with a univalence principle: equivalences of univalent double categories coincide with their identities

Locations

  • arXiv (Cornell University)
  • DataCite API

Ask a Question About This Paper

Summary

Login to see paper summary

Category theory is a branch of mathematics that provides a formal framework for understanding the relationship between mathematical structures. To this end, a category not only incorporates the data of … Category theory is a branch of mathematics that provides a formal framework for understanding the relationship between mathematical structures. To this end, a category not only incorporates the data of the desired objects, but also "morphisms", which capture how different objects interact with each other. Category theory has found many applications in mathematics and in computer science, for example in functional programming.
Category theory unifies mathematical concepts, aiding comparisons across structures by incorporating objects and morphisms, which capture their interactions. It has influenced areas of computer science such as automata theory, functional … Category theory unifies mathematical concepts, aiding comparisons across structures by incorporating objects and morphisms, which capture their interactions. It has influenced areas of computer science such as automata theory, functional programming, and semantics. Certain objects naturally exhibit two classes of morphisms, leading to the concept of a double category, which has found applications in computing science (e.g., ornaments, profunctor optics, denotational semantics). The emergence of diverse categorical structures motivated a unified framework for category theory. However, unlike other mathematical objects, classification of categorical structures faces challenges due to various relevant equivalences. This poses significant challenges when pursuing the formalization of categories and restricts the applicability of powerful techniques, such as transport along equivalences. This work contends that univalent foundations offers a suitable framework for classifying different categorical structures based on desired notions of equivalences, and remedy the challenges when formalizing categories. The richer notion of equality in univalent foundations makes the equivalence of a categorical structure an inherent part of its structure. We concretely apply this analysis to double categorical structures. We characterize and formalize various definitions in Coq UniMath, including (pseudo) double categories and double bicategories, up to chosen equivalences. We also establish univalence principles, making chosen equivalences part of the double categorical structure, analyzing strict double setcategories (invariant under isomorphisms), pseudo double setcategories (invariant under isomorphisms), univalent pseudo double categories (invariant under vertical equivalences) and univalent double bicategories (invariant under gregarious equivalences).
Univalent categories constitute a well-behaved and useful notion of category in univalent foundations. The notion of univalence has subsequently been generalized to bicategories and other structures in (higher) category theory. … Univalent categories constitute a well-behaved and useful notion of category in univalent foundations. The notion of univalence has subsequently been generalized to bicategories and other structures in (higher) category theory. Here, we zoom in on monoidal categories and study them in a univalent setting. Specifically, we show that the bicategory of univalent monoidal categories is univalent. Furthermore, we construct a Rezk completion for monoidal categories: we show how any monoidal category is weakly equivalent to a univalent monoidal category, universally. We have fully formalized these results in UniMath, a library of univalent mathematics in the Coq proof assistant.
Univalent categories constitute a well-behaved and useful notion of category in univalent foundations. The notion of univalence has subsequently been generalized to bicategories and other structures in (higher) category theory. … Univalent categories constitute a well-behaved and useful notion of category in univalent foundations. The notion of univalence has subsequently been generalized to bicategories and other structures in (higher) category theory. Here, we zoom in on monoidal categories and study them in a univalent setting. Specifically, we show that the bicategory of univalent monoidal categories is univalent. Furthermore, we construct a Rezk completion for monoidal categories: we show how any monoidal category is weakly equivalent to a univalent monoidal category, universally. We have fully formalized these results in UniMath, a library of univalent mathematics in the Coq proof assistant.
We present a type theory called fibrational virtual double type theory (FVDblTT) designed specifically for formal category theory, which is a succinct reformulation of New and Licata's Virtual Equipment Type … We present a type theory called fibrational virtual double type theory (FVDblTT) designed specifically for formal category theory, which is a succinct reformulation of New and Licata's Virtual Equipment Type Theory (VETT). FVDblTT formalizes reasoning on isomorphisms that are commonly employed in category theory. Virtual double categories are one of the most successful frameworks for developing formal category theory, and FVDblTT has them as a theoretical foundation. We validate its worth as an internal language of virtual double categories by providing a syntax-semantics duality between virtual double categories and specifications in FVDblTT as a biadjunction.
We introduce and develop the notion of *displayed categories*. A displayed category over a category C is equivalent to "a category D and functor F : D --> C", but … We introduce and develop the notion of *displayed categories*. A displayed category over a category C is equivalent to "a category D and functor F : D --> C", but instead of having a single collection of "objects of D" with a map to the objects of C, the objects are given as a family indexed by objects of C, and similarly for the morphisms. This encapsulates a common way of building categories in practice, by starting with an existing category and adding extra data/properties to the objects and morphisms. The interest of this seemingly trivial reformulation is that various properties of functors are more naturally defined as properties of the corresponding displayed categories. Grothendieck fibrations, for example, when defined as certain functors, use equality on objects in their definition. When defined instead as certain displayed categories, no reference to equality on objects is required. Moreover, almost all examples of fibrations in nature are, in fact, categories whose standard construction can be seen as going via displayed categories. We therefore propose displayed categories as a basis for the development of fibrations in the type-theoretic setting, and similarly for various other notions whose classical definitions involve equality on objects. Besides giving a conceptual clarification of such issues, displayed categories also provide a powerful tool in computer formalisation, unifying and abstracting common constructions and proof techniques of category theory, and enabling modular reasoning about categories of multi-component structures. As such, most of the material of this article has been formalised in Coq over the UniMath library, with the aim of providing a practical library for use in further developments.
We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples … We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of univalent bicategories in a modular fashion, we develop displayed bicategories, an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. We demonstrate the applicability of this notion, and prove that several bicategories of interest are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Furthermore, we show that every bicategory with univalent hom-categories is weakly equivalent to a univalent bicategory. All of our work is formalized in Coq as part of the UniMath library of univalent mathematics.
We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples … We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of univalent bicategories, we develop the notion of `displayed bicategories', an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. Displayed bicategories allow us to construct univalent bicategories in a modular fashion. We demonstrate the applicability of this notion, and prove that several bicategories of interest are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Furthermore, we show that every bicategory with univalent hom-category is weakly equivalent to a univalent bicategory. All of our work is formalized in Coq as part of the UniMath library of univalent mathematics.
We develop the formal theory of monads, as established by Street, in univalent foundations. This allows us to formally reason about various kinds of monads on the right level of … We develop the formal theory of monads, as established by Street, in univalent foundations. This allows us to formally reason about various kinds of monads on the right level of abstraction. In particular, we define the bicategory of monads internal to a bicategory, and prove that it is univalent. We also define Eilenberg-Moore objects, and we show that both Eilenberg-Moore categories and Kleisli categories give rise to Eilenberg-Moore objects. Finally, we relate monads and adjunctions in arbitrary bicategories. Our work is formalized in Coq using the UniMath library.
We develop the formal theory of monads, as established by Street, in univalent foundations. This allows us to formally reason about various kinds of monads on the right level of … We develop the formal theory of monads, as established by Street, in univalent foundations. This allows us to formally reason about various kinds of monads on the right level of abstraction. In particular, we define the bicategory of monads internal to a bicategory, and prove that it is univalent. We also define Eilenberg-Moore objects, and we show that both Eilenberg-Moore categories and Kleisli categories give rise to Eilenberg-Moore objects. Finally, we relate monads and adjunctions in arbitrary bicategories. Our work is formalized in Coq using the UniMath library.
This book is an invitation to discover advanced topics in category theory through concrete, real-world examples. It aims to give a tour: a gentle, quick introduction to guide later exploration. … This book is an invitation to discover advanced topics in category theory through concrete, real-world examples. It aims to give a tour: a gentle, quick introduction to guide later exploration. The tour takes place over seven sketches, each pairing an evocative application, such as databases, electric circuits, or dynamical systems, with the exploration of a categorical structure, such as adjoint functors, enriched categories, or toposes. No prior knowledge of category theory is assumed. A feedback form for typos, comments, questions, and suggestions is available here: this https URL
This thesis deals with two main topics: virtual double categories as semantics environments for predicate logic, and a syntactic presentation of virtual double categories as a type theory. One significant … This thesis deals with two main topics: virtual double categories as semantics environments for predicate logic, and a syntactic presentation of virtual double categories as a type theory. One significant principle of categorical logic is bringing together the semantics and the syntax of logical systems in a common categorical framework. This thesis is intended to propose a double-categorical method for categorical logic in line with this principle. On the semantic side, we investigate virtual double categories as a model of predicate logic and illustrate that this framework subsumes the existing frameworks properly. On the syntactic side, we develop a type theory called FVDblTT that is designed as an internal language for virtual double categories.
This book is an invitation to discover advanced topics in category theory through concrete, real-world examples. It aims to give a tour: a gentle, quick introduction to guide later exploration. … This book is an invitation to discover advanced topics in category theory through concrete, real-world examples. It aims to give a tour: a gentle, quick introduction to guide later exploration. The tour takes place over seven sketches, each pairing an evocative application, such as databases, electric circuits, or dynamical systems, with the exploration of a categorical structure, such as adjoint functors, enriched categories, or toposes. No prior knowledge of category theory is assumed. A feedback form for typos, comments, questions, and suggestions is available here: https://docs.google.com/document/d/160G9OFcP5DWT8Stn7TxdVx83DJnnf7d5GML0_FOD5Wg/edit
We describe our experience implementing a broad category-theory library in Coq. Category theory and computational performance are not usually mentioned in the same breath, but we have needed substantial engineering … We describe our experience implementing a broad category-theory library in Coq. Category theory and computational performance are not usually mentioned in the same breath, but we have needed substantial engineering effort to teach Coq to cope with large categorical constructions without slowing proof script processing unacceptably. In this paper, we share the lessons we have learned about how to represent very abstract mathematical objects and arguments in Coq and how future proof assistants might be designed to better support such reasoning. One particular encoding trick to which we draw attention allows category-theoretic arguments involving duality to be internalized in Coq's logic with definitional equality. Ours may be the largest Coq development to date that uses the relatively new Coq version developed by homotopy type theorists, and we reflect on which new features were especially helpful.
In this document, we review the basics of category theory and functors calculus, and we implement some novel concepts. In particular, we review the concepts of category, functors, and natural … In this document, we review the basics of category theory and functors calculus, and we implement some novel concepts. In particular, we review the concepts of category, functors, and natural transformations. Furthermore we introduce the novel concept of func- tors of functors. We illustrate these concepts with diagrams to ameliorate the expression of these ideas. We conclude that these concepts open new avenues and are advancing category.
Simplicial type theory extends homotopy type theory with a directed path type which internalizes the notion of a homomorphism within a type. This concept has significant applications both within mathematics … Simplicial type theory extends homotopy type theory with a directed path type which internalizes the notion of a homomorphism within a type. This concept has significant applications both within mathematics -- where it allows for synthetic (higher) category theory -- and programming languages -- where it leads to a directed version of the structure identity principle. In this work, we construct the first types in simplicial type theory with non-trivial homomorphisms. We extend simplicial type theory with modalities and new reasoning principles to obtain triangulated type theory in order to construct the universe of discrete types $\mathcal{S}$. We prove that homomorphisms in this type correspond to ordinary functions of types i.e., that $\mathcal{S}$ is directed univalent. The construction of $\mathcal{S}$ is foundational for both of the aforementioned applications of simplicial type theory. We are able to define several crucial examples of categories and to recover important results from category theory. Using $\mathcal{S}$, we are also able to define various types whose usage is guaranteed to be functorial. These provide the first complete examples of the proposed directed structure identity principle.
The generality and pervasiness of category theory in modern mathematics makes it a frequent and useful target of formalization. It is however quite challenging to formalize, for a variety of … The generality and pervasiness of category theory in modern mathematics makes it a frequent and useful target of formalization. It is however quite challenging to formalize, for a variety of reasons. Agda currently (i.e. in 2020) does not have a standard, working formalization of category theory. We document our work on solving this dilemma. The formalization revealed a number of potential design choices, and we present, motivate and explain the ones we picked. In particular, we find that alternative definitions or alternative proofs from those found in standard textbooks can be advantageous, as well as fit Agda's type theory more smoothly. Some definitions regarded as equivalent in standard textbooks turn out to make different universe level assumptions, with some being more polymorphic than others. We also pay close attention to engineering issues, in particular so that the library integrates well with Agda's own standard library, as well as supporting as many of the modes of Agda as possible.
The categorified theories known as "doctrines" specify a category equipped with extra structure, analogous to how ordinary theories specify a set with extra structure. We introduce a new framework for … The categorified theories known as "doctrines" specify a category equipped with extra structure, analogous to how ordinary theories specify a set with extra structure. We introduce a new framework for doctrines based on double category theory. A cartesian double theory is defined to be a small double category with finite products and a model of a cartesian double theory to be a finite product-preserving lax functor out of it. Many familiar categorical structures are models of cartesian double theories, including categories, presheaves, monoidal categories, braided and symmetric monoidal categories, 2-groups, multicategories, and cartesian and cocartesian categories. We show that every cartesian double theory has a unital virtual double category of models, with lax maps between models given by cartesian lax natural transformations, bimodules between models given by cartesian modules, and multicells given by multimodulations. In many cases, the virtual double category of models is representable, hence is a genuine double category. Moreover, when restricted to pseudo maps, every cartesian double theory has a virtual equipment of models, hence an equipment of models in the representable case. Compared with 2-monads, double theories have the advantage of being straightforwardly presentable by generators and relations, as we illustrate through a large number of examples.