An explicit upper bound for $$L(1,\chi )$$ when $$\chi $$ is quadratic

Type: Article

Publication Date: 2023-10-03

Citations: 1

DOI: https://doi.org/10.1007/s40993-023-00476-4

Abstract

Abstract We consider Dirichlet L -functions $$L(s, \chi )$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> where $$\chi $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>χ</mml:mi> </mml:math> is a non-principal quadratic character to the modulus q . We make explicit a result due to Pintz and Stephens by showing that $$|L(1, \chi )|\leqslant \frac{1}{2}\log q$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$q\geqslant 2\cdot 10^{23}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>2</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>23</mml:mn> </mml:msup> </mml:mrow> </mml:math> and $$|L(1, \chi )|\leqslant \frac{9}{20}\log q$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>9</mml:mn> <mml:mn>20</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$q\geqslant 5\cdot 10^{50}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>5</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>50</mml:mn> </mml:msup> </mml:mrow> </mml:math> .

Locations

  • Research in Number Theory - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ An explicit upper bound for $L(1, χ)$ when $χ$ is quadratic 2023 D. R. Johnston
O. Ramare
T. S. Trudgian
+ PDF Chat Dirichlet series expansions of p-adic L-functions 2021 Heiko Knospe
Lawrence C. Washington
+ Small values of $| L^\prime/L(1,\chi) |$ 2020 Youness Lamzouri
Alessandro Languasco
+ Large values of quadratic Dirichlet 𝐿-functions over monic irreducible polynomial in 𝔽_{𝕢}[𝕥] 2024 Pranendu Darbar
Gopal Maiti
+ Explicit Upper Bounds for $|L(1, \chi)|$ when $\chi(3)=0$ 2013 Sumaia Saad Eddin
David J. Platt
+ Upper bounds for |L(1,chi)| 2001 Andrew Granville
K. Soundararajan
+ Upper bounds for |L(1,chi)| 2001 Andrew Granville
K. Soundararajan
+ Explicit Upper Bounds for $|L(1, χ)|$ when $χ(3)=0$ 2013 Sumaia Saad Eddin
David J. Platt
+ PDF Chat Explicit upper bounds for |L(1, χ)| when χ(3)=0 2013 David J. Platt
Sumaia Saad Eddin
+ PDF Chat An explicit upper bound for |L(1,χ)| when χ(2) = 1 and χ is even 2016 Sumaia Saad Eddin
+ PDF Chat On the Cubic Moment of Quadratic Dirichlet $L$-functions 2005 Qiao Zhang
+ An asymptotic distribution for $\left|L^\prime/L(1,\chi)\right|$ 2015 Sumaia Saad Eddin
+ PDF Chat Small Values of |<i>L'</i>/<i>L</i>(1,χ)| 2021 Youness Lamzouri
Alessandro Languasco
+ Non-vanishing of Dirichlet L-functions at the central point 2010 Hung M. Bui
+ PDF Chat A note on Dirichlet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:mi>L</mml:mi></mml:math>-functions 2018 John Friedlander
Henryk Iwaniec
+ Explicit lower bounds on $|L(1, \chi)|$ 2021 Michael J. Mossinghoff
Valeriia V. Starichkova
Timothy S. Trudgian
+ Dirichlet $L$-functions of quadratic characters of prime conductor at the central point 2018 Siegfred Baluyot
Kyle Pratt
+ Dirichlet $L$-functions of quadratic characters of prime conductor at the central point 2018 Siegfred Baluyot
Kyle Pratt
+ PDF Chat Dirichlet $L$-functions of quadratic characters of prime conductor at the central point 2021 Siegfred Baluyot
Kyle Pratt
+ An explicit zero-free region for the Dirichlet L-functions 2005 Habiba Kadiri

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat BOUNDING ZETA ON THE 1-LINE UNDER THE PARTIAL RIEMANN HYPOTHESIS 2024 Andrés Chirre