Calibration of nuclear charge density distribution by back-propagation neural networks

Type: Article

Publication Date: 2023-09-29

Citations: 10

DOI: https://doi.org/10.1103/physrevc.108.034315

Abstract

Based on the back-propagation neural networks and density functional theory, a supervised learning is performed firstly to generate the nuclear charge density distributions. The charge density is further calibrated to the experimental charge radii by a composite loss function. It is found that, when the parity, pairing, and shell effects are taken into account, about $96%$ of the nuclei in the validation set fall within 2 standard deviations of the predicted charge radii. Moreover, the kink in charge radii on Hg isotopes has been successfully reproduced. The calibrated charge density is then mapped to the matter density and further mapped to the binding energies according to the Hohenberg-Kohn theorem. It provides an improved description of some nuclei in both binding energies and charge radii. Moreover, the anomalous overbinding in $^{48}\mathrm{Ca}$ implies that the segmental calibrations by neural networks for beyond-mean-field effects deserve further discussion.

Locations

  • Physical review. C - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Calibration of nuclear charge density distribution by back-propagation neural networks 2022 Zu-Xing Yang
Fan Xiao-hua
Tomoya Naito
Zhong-Ming Niu
Z. P. Li
Haozhao Liang
+ PDF Chat Calculation of nuclear charge radii with a trained feed-forward neural network 2020 Di Wu
C. L. Bai
H. Sagawa
H. Q. Zhang
+ Nuclear charge radii in Bayesian neural networks revisited 2022 Xiao-Xu Dong
Rong An
Jun-Xu Lu
Li-Sheng Geng
+ Nuclear charge radii in Bayesian neural networks revisited 2023 Xiao-Xu Dong
Rong An
Jun-Xu Lu
Li-Sheng Geng
+ PDF Chat Nuclear charge radii: density functional theory meets Bayesian neural networks 2016 Raditya Utama
Wei-Chia Chen
J. Piekarewicz
+ A Kohn-Sham scheme based neural network for nuclear systems 2023 Zu-Xing Yang
Xiao-Hua Fan
Z. P. Li
Haozhao Liang
+ A Kohn-Sham Scheme Based Neural Network for Nuclear Systems 2022 Zu-Xing Yang
Fan Xiao-hua
Z. P. Li
Haozhao Liang
+ Nuclear binding energies in artificial neural networks 2022 Lin-Xing Zeng
Yu-Ying Yin
Xiao-Xu Dong
Li-Sheng Geng
+ PDF Chat Global prediction of nuclear charge density distributions using a deep neural network 2024 Tianshuai Shang
Hui Hui Xie
Jian Li
Haozhao Liang
+ PDF Chat Nuclear binding energies in artificial neural networks 2024 Lin-Xing Zeng
Yu-Ying Yin
Xiao-Xu Dong
Li-Sheng Geng
+ PDF Chat Global prediction of nuclear charge density distributions using deep neural network 2024 Tian Shuai Shang
Hui Hui Xie
Jian Li
Haozhao Liang
+ Inference of Parameters for Back-shifted Fermi Gas Model using Feedback Neural Network 2024 P. Le DĂ»
Tianshuai Shang
Peng Geng
Jian Li
Dong-Liang Fang
+ PDF Chat Nuclear binding energy predictions based on BP neural network 2020 Bao-Bao Jiao
+ Novel Bayesian neutral network based approach for nuclear charge radii 2021 Xiao-Xu Dong
Rong An
Jun-Xu Lu
Li-Sheng Geng
+ Deep Learning: A Tool for Computational Nuclear Physics 2018 Gianina Alina Negoita
Glenn R. Luecke
James P. Vary
Pieter Maris
A. M. Shirokov
Ik Jae Shin
Youngman Kim
Esmond Ng
Chao Yang
+ Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects 2018 Zhong-Ming Niu
Haozhao Liang
+ PDF Chat Novel Bayesian neural network based approach for nuclear charge radii 2022 Xiao-Xu Dong
Rong An
Jun-Xu Lu
Li-Sheng Geng
+ PDF Chat An artificial neural network application on nuclear charge radii 2013 Serkan Akkoyun
Tuncay Bayram
S. O. Kara
Alper Sinan
+ The study of Nuclear binding energy for $A\geq100$ based on Odd-Even staggering of nuclear masses 2020 Bao-Bao Jiao
+ A Data-Driven Density Functional Model for Nuclear Systems 2023 Zu-Xing Yang
Xiao-Hua Fan
Z. P. Li
Haozhao Liang

Works Cited by This (35)

Action Title Year Authors
+ PDF Chat Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach 2016 Raditya Utama
J. Piekarewicz
H. Prosper
+ PDF Chat Neutron skin thickness of heavy nuclei with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi><mml:mi>-particle</mml:mi></mml:math>correlations and the slope of the nuclear symmetry energy 2014 S. Typel
+ PDF Chat Comment on “<i>Ab initio</i>Study of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mmultiscripts><mml:mi>Ca</mml:mi><mml:mprescripts /><mml:none /><mml:mn>40</mml:mn></mml:mmultiscripts></mml:math>with an Importance-Truncated No-Core Shell Model” 2008 D. J. Dean
G. Hagen
M. Hjorth‐Jensen
T. Papenbrock
A. Schwenk
+ PDF Chat Evidence for Symplectic Symmetry in<i>Ab Initio</i>No-Core Shell Model Results for Light Nuclei 2007 T. Dytrych
K. D. Sviratcheva
C. Bahri
J. P. Draayer
James P. Vary
+ PDF Chat Nuclear mass systematics using neural networks 2004 S. Athanassopoulos
E. Mavrommatis
K. A. Gernoth
J. W. Clark
+ PDF Chat Collective Modes in Light Nuclei from First Principles 2013 T. Dytrych
Kristina D. Launey
J. P. Draayer
Pieter Maris
James P. Vary
Érik Saule
Ümit V. ÇatalyĂŒrek
Masha Sosonkina
Daniel Langr
M. A. Caprio
+ Importance truncation for large-scale configuration interaction approaches 2009 Robert Roth
+ PDF Chat A proton density bubble in the doubly magic 34Si nucleus 2016 A. Mutschler
A. Lemasson
O. Sorlin
D. Bazin
C. Borcea
R. Borcea
Zs. DombrĂ di
J.-P. Ebran
A. Gade
H. Iwasaki
+ PDF Chat Influence of pairing correlations on the radius of neutron-rich nuclei 2017 Ying Zhang
Ying Chen
J. Meng
P. Ring
+ Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects 2018 Zhong-Ming Niu
Haozhao Liang