The cubic Pell equation $L$-function

Type: Article

Publication Date: 2023-01-01

Citations: 1

DOI: https://doi.org/10.4064/aa220918-18-8

Abstract

For $d \gt 1$ a cubefree rational integer, we define an $L$-function (denoted $L_d(s)$) whose coefficients are derived from the cubic theta function for $\mathbb Q(\sqrt {-3})$. The Dirichlet series defining $L_d(s)$ converges for ${\rm Re}(s) \gt 1$, and

Locations

  • Acta Arithmetica - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Columbia Academic Commons (Columbia University) - View - PDF

Similar Works

Action Title Year Authors
+ The cubic Pell equation L-function 2022 Dorian Goldfeld
Gerhardt Hinkle
+ The Cubic Analogue of Pellā€™s Equation 2003 Edward Barbeau
+ PDF Chat On the cubic Pell equation over finite fields 2023 Simone Dutto
Nadir Murru
+ Diagonal Functions of the k-Pell and k-Pell-Lucas Polynomials and some identities 2018 Paula Catarino
+ PDF Chat Pellā€™s Equation 2017 Marcin Acewicz
Karol Pąk
+ On the cubic Pell equation over finite fields 2022 Simone Dutto
Nadir Murru
+ On the sum of the reciprocals of $$\pmb {k}$$-generalized Pell numbers 2023 Benedict Vasco Normenyo
+ Pellā€™s Equation and Pell Number Triples 1976 Maibelys Josefina LeĆ³n
+ Pell's Equation 2003 Edward Barbeau
+ The Pell equation 2003 John Stillwell
+ On the zeros of the L-function associated with the cubic theta function 2008 N. V. Proskurin
+ Pell's Equation: History, Methods, and Number Theory 2015 Drew Curd
+ PDF Chat On the Cubic Moment of Quadratic Dirichlet $L$-functions 2005 Qiao Zhang
+ The Complex L-Functions 1976 Serge Lang
+ PELLā€™S EQUATIONS IN GAUSSIAN INTEGERS 2019 Algracia Kharbuki
Madan Mohan Singh
+ PDF Chat On the cubic $L$-function 2013 N. V. Proskurin
+ The standard deviation of 1, 2, ā€¦ , <i>n</i> ā€“ Pell's equation and rational triangles 1997 E. Keith Lloyd
+ The cubic formula in characteristic 3 2011 Dubravka Bodiroga
James Parson
+ Quartic Integral Polynomial Pell Equations 2023 Zachary Scherr
Katherine Thompson
+ PDF Chat A Planar Cubic Derived from the Logarithm of the Dedekind $$\eta $$-Function 2021 C.A. LĆ¼tken