Type: Article
Publication Date: 2023-01-01
Citations: 1
DOI: https://doi.org/10.4064/aa220918-18-8
For $d \gt 1$ a cubefree rational integer, we define an $L$-function (denoted $L_d(s)$) whose coefficients are derived from the cubic theta function for $\mathbb Q(\sqrt {-3})$. The Dirichlet series defining $L_d(s)$ converges for ${\rm Re}(s) \gt 1$, and
Action | Title | Year | Authors |
---|---|---|---|
+ | The shifted convolution L-function for Maass forms | 2024 |
Dorian Goldfeld Gerhardt Hinkle Jeffrey Hoffstein |